Green Thermodynamics for Biofuel Synthesis using Bambara Nutshell Catalyst: Toward Sustainable Energy Solutions

Authors

  • Abdulhalim Musa Abubakar Faculty of Engineering, Department of Chemical Engineering, Modibbo Adama University, Yola, Nigeria Author
  • Sergij Vambol Department of Occupational and Environmental Safety, National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine Author
  • Rashid Shamsuddin Faculty of Engineering, Department of Chemical Engineering, Islamic University of Madinah, Madinah, Saudi Arabia Author
  • Marwea AlHedrewy Department of Technical Engineering, Islamic University of Najaf, Najaf, Iraq; Department of Technical Engineering, Islamic University of Diwaniyah, Al Diwaniyah, Iraq Author
  • Jerry Yakubu Faculty of Engineering, Department of Chemical Engineering, Modibbo Adama University, Yola, Nigeria Author

DOI:

https://doi.org/10.64229/c5av1903

Keywords:

Bambara nutshell, Green chemistry, Biodiesel thermodynamics, Oleic acid, Biocatalyst

Abstract

In this study, we discussed the green chemistry principle applied to the thermodynamics of biofuel production. As a case study, the study applies green chemistry principles to investigate the thermodynamics of biodiesel synthesis using a heterogeneous catalyst derived from Bambara nutshell (BNS), a renewable agro-waste material. The BNS catalyst was prepared through carbonization and sulfonation and characterized using fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM), revealing functional groups and porous morphology favorable for catalysis. Biodiesel was synthesized via esterification of oleic acid at temperatures ranging from 50-65 . Thermodynamic parameters including activation energy, enthalpy, entropy, and Gibbs free energy were evaluated across first-, second-, and third-order kinetic models. Results showed that the reaction followed first-order kinetics with the best correlation (R2 = 0.9980), lowest activation energy (51.64  kJ/mol), and most favorable thermodynamic profile__demonstrating low enthalpy (48.80  kJ/mol), less negative entropy (-148.11  J/mol·K), and the lowest Gibbs free energy across tested temperatures. These outcomes confirm the energy efficiency and feasibility of the process, also in support of green chemistry principle 1, 6, 7, 9 and 12. The integration of green chemistry with thermodynamic modeling highlights the potential of BNS as a sustainable, low-cost catalyst for environmentally friendly biodiesel production.

References

[1]Sheldon R A, Arends I, Hanefeld U. Green chemistry and catalysis. John Wiley & Sons, 2007. DOI: 10.1002/9783527611003

[2]Anastas P, Eghbali N. Green chemistry: Principles and practice. Chemical Society Reviews, 2010, 39(1), 301-312. DOI: 10.1039/B918763B

[3]Adam DH, Elvina, Hasibuan MNS, Syahputra Pasaribu RLH, Suriyani. Green chemistry: The economic impact perspective. International Journal of Scientific & Technology Research, 2020, 9(4), 471-473. DOI: 10.31219/osf.io/gqe63

[4]Sheldon RA. Green chemistry and resource efficiency: Towards a green economy. Green Chemistry, 2016, 18(11), 3180-3183. DOI: 10.1039/C6GC90040B

[5]Bedenik NO, Zidak N. Green economy supported by green chemistry. Eurasian Journal of Business and Management, 2019, 7(2), 49-57. DOI: 10.15604/ejbm.2019.07.02.005

[6]Listyarini RV, Pamenang FDN, Dewi NK. Guided-inquiry of green chemistry-based experiments in biodiesel synthesis. Scientiae Educatia: Jurnal Pendidikan Sains, 2020, 9(1), 14-29. DOI: 10.24235/sc.educatia.v9i1.6283

[7]Gude VG, Martinez-Guerra E. Green chemistry of microwave-enhanced biodiesel production. Production of Biofuels and Chemicals with Microwave. Dordrecht: Springer Netherlands, 2014, 225-250. DOI: 10.1007/978-94-017-9612-5_11

[8]Amesho KTT, Lin YC, Chen CE, Cheng PC, Shangdiar S. Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique. Fuel, 2022, 323, 123876. DOI: 10.1016/j.fuel.2022.123876

[9]Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12(5), 743-754. DOI: 10.1039/B921171C

[10]Bezbradica D, Crovic M J. Tanaskovic S, Lukovic N, Carevic M, Milivojevic A, et al. Enzymatic syntheses of esters__Green chemistry for valuable food, fuel and fine chemicals. Current Organic Chemistry, 2017, 21(2), 104-138. DOI: 10.2174/1385272821666161108123326

[11]Ncube A, Mtetwa S, Bukhari M, Fiorentino G, Passaro R. Circular economy and green chemistry: The need for radical innovative approaches in the design for new products. Energies, 2023, 16(4), 1752. DOI: 10.3390/en16041752

[12]Clark JH, Luque R, Matharu AS. Matharu, Green chemistry, biofuels, and biorefinery. Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1), 183-207. DOI: 10.1146/annurev-chembioeng-062011-081014

[13]Sheldon RA. E factors, green chemistry and catalysis: An odyssey. Chemical Communications, 2008, (29), 3352-3365. DOI: 10.1039/B803584A

[14]Sheldon RA. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 2012, 41(4), 1437-1451. DOI: 10.1039/C1CS15219J

[15]Gude VG, Martinez-Guerra E. Green chemistry with process intensification for sustainable biodiesel production. Environmental Chemistry Letters, 2018, 16(2), 327-341. DOI: 10.1007/s10311-017-0680-9

[16]Constable DJC, Curzons AD, Cunningham VL. Cunningham, metrics to ‘green’ chemistry__which are the best? Green Chemistry, 2002, 4(6), 521-527. DOI: 10.1039/B206169B

[17]Outili N, Kerras H, Nekkab C, Merouani R, Meniai AH. Biodiesel production optimization from waste cooking oil using green chemistry metrics. Renewable Energy, 2020, 145, 2575-2586. DOI: 10.1016/j.renene.2019.07.152

[18] Nagendrappa G. Organic synthesis using clay catalysts: clays for ‘green chemistry’. Resonance, 2002, 7(1), 64-77. DOI: 10.1007/BF02836172

[19]Dias JA, Caliman E, Dias SCL, Paulo M, de Souz ATCP. Preparation and characterization of supported H3PW12O40 on silica gel: A potential catalyst for green chemistry processes. Catalysis Today, 2003, 85(1), 39-48. DOI: 10.1016/S0920-5861(03)00192-5

[20]Sheldon RA. Engineering a more sustainable world through catalysis and green chemistry. Journal of The Royal Society Interface, 2016, 13(116), 20160087. DOI: 10.1098/rsif.2016.0087

[21]Michrowska A, Gułajski Ł, Kaczmarska Z, Mennecke K, Kirschning A, Grela K. A green catalyst for green chemistry: Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group. Green Chemistry, 2006, 8(8), 685-688. DOI: 10.1039/B605138C

[22]Meurig Thomas J, Raja R. Designing catalysts for clean technology, green chemistry, and sustainable development. Annual Review of Materials Research, 2005, 35(1), 315-350. DOI: 10.1146/annurev.matsci.35.102003.140852

[23]Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC. The role of catalysis in the design, development, and implementation of green chemistry. Catalysis Today, 2000, 55(1-2), 11-22. DOI: 10.1016/S0920-5861(99)00222-9

[24]Gladysz JA. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure and Applied Chemistry, 2001, 73(8), 1319-1324. DOI: 10.1351/pac200173081319

[25]Ningaraju C, Yatish KV, Mithun Prakash R, Sakar M, Geetha Balakrishna R. Simultaneous refining of biodiesel-derived crude glycerol and synthesis of value-added powdered catalysts for biodiesel production: A green chemistry approach for sustainable biodiesel industries. Journal of Cleaner Production, 2022, 363, 132448. DOI: 10.1016/j.jclepro.2022.132448

[26]Naveenkumar R, Baskar G. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresource Technology, 2021, 320, 124347. DOI: 10.1016/j.biortech.2020.124347

[27]Outili N, Kerras H, Meniai AH. Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100794. DOI: 10.1016/j.cogsc.2023.100794

[28]Gross EM, Williams SH, Williams E, Dobberpuhl DA, Fujita J. Synthesis and characterization of biodiesel from used cooking oil: A problem-based green chemistry laboratory experiment.Green Chemistry Experiments in Undergraduate Laboratories. American Chemical Society, 2016, 71-92. DOI: 10.1021/bk-2016-1233.ch005

[29]Fasciotti M. Perspectives for the use of biotechnology in green chemistry applied to biopolymers, fuels and organic synthesis: From concepts to a critical point of view. Sustainable Chemistry and Pharmacy, 2017, 6, 82-89. DOI: 10.1016/j.scp.2017.09.002

[30]Clark JH, Budarin V, Deswarte FEI, Hardy JJ, Kerton FM, Hunt AJ, et al. Green chemistry and the biorefinery: A partnership for a sustainable future. Green chemistry, 2006, 8(10), 853-860. DOI: 10.1039/B604483M

[31]Clark JH, Deswarte FEI, Farmer TJ. The integration of green chemistry into future biorefineries. Biofuels, Bioproducts and Biorefining, 2009, 3(1), 72-90. DOI: 10.1002/bbb.119

[32]Linder M. Ripe for disruption: Reimagining the role of green chemistry in a circular economy. Green Chemistry Letters and Reviews, 2017, 10(4), 428-435. DOI: 10.1080/17518253.2017.1392618

[33]Hjeresen DL, Kirchhoff MM, Lankey RL. Green chemistry: Environment, economics, and competitiveness. Corporate Environmental Strategy, 2002, 9(3), 259-266. DOI: 10.1016/S1066-7938(02)00068-4

[34]Francis AI, Gerald CE, Omale JO. Green chemistry in manufacturing: Innovations in reducing environmental impact. World Journal of Advanced Research and Reviews, 2024, 23(3), 2826-2841. DOI: 10.30574/wjarr

[35]Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis: Solvent-free and highly concentrated reactions. Chemical Reviews, 2007, 107(6), 2503-2545. DOI: 10.1021/cr0509556

[36]Anpo M. Utilization of TiO2 photocatalysts in green chemistry. Pure and Applied Chemistry, 2000, 72(7), 1265-1270. DOI: 10.1351/pac200072071265

[37]Antenucci A, Dughera S, Renzi P. Green chemistry meets asymmetric organocatalysis: A critical overview on catalysts synthesis. ChemSusChem, 2021, 14(14), 2785-2853. DOI: 10.1002/cssc.202100573

[38]Jeon SJ, Li H, Walsh PJ. A green chemistry approach to a more efficient asymmetric catalyst: Solvent-free and highly concentrated alkyl additions to ketones. Journal of the American Chemical Society, 2005, 127(47), 16416-16425. DOI: 10.1021/ja052200m

[39]Wen C, Yin A, Dai WL. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. Applied Catalysis B: Environmental, 2014, 160, 730-741. DOI: 10.1016/j.apcatb.2014.06.016

[40]Centi G, Perathoner S. Catalysis and sustainable (green) chemistry. Catalysis Today, 2003, 77(4), 287-297. DOI: 10.1016/S0920-5861(02)00374-7.

[41]Sheldon RA, Brady D. Green chemistry, biocatalysis, and the chemical industry of the future. ChemSusChem, 2022, 15(9), e202102628. DOI: 10.1002/cssc.202102628

[42]Watson WJW. How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability? Green Chemistry, 2012, 14(2), 251-259. DOI: 10.1039/C1GC15904F

[43]Cannon AS, Pont JL, Warner JC. Green chemistry and the pharmaceutical industry. Green techniques for organic synthesis and medicinal chemistry, 2012, 25-32. DOI: 10.1002/9780470711828

[44]Gupta P, Mahajan A. Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. RSC Advances, 2015, 5(34), 26686-26705. DOI: 10.1039/C5RA00358J

[45]Ciriminna R, Pagliaro M. Green chemistry in the fine chemicals and pharmaceutical industries. Organic Process Research & Development, 2013, 17(12), 1479-1484. DOI: 10.1021/op400258a

[46]Kar S, Sanderson H, Roy K, Benfenati E, LeszczynskiN J. Green chemistry in the synthesis of pharmaceuticals. Chemical Reviews, 2021, 122(3), 3637-3710. DOI: 10.1021/acs.chemrev.1c00631

[47]Roschangar F, Sheldon RA, Senanayake CH. Overcoming barriers to green chemistry in the pharmaceutical industry__the Green Aspiration LevelTM concept. Green Chemistry, 2015, 17(2), 752-768. DOI: 10.1039/C4GC01563K

[48]Sheldon R. Introduction to green chemistry, organic synthesis and pharmaceuticals. Green Chemistry in the Pharmaceutical Industry, 2010, 1-20. DOI: 10.1002/9783527629688

[49]Tucker JL. Green chemistry, a pharmaceutical perspective. Organic Process Research & Development, 2006, 10(2), 315-319. DOI: 10.1021/op050227k

[50]Msingh R, Pramanik R, Hazra S, Uni J. Role of green chemistry in pharmaceutical industry: A review. Journal of University of Shanghai for Science and Technology, 2021, 23, 291-299, DOI: 10.51201/JUSST/21/121018

[51]Castro GAD, Fernandes SA. Microwave-assisted green synthesis of levulinate esters as biofuel precursors using calix[4]arene as an organocatalyst under solvent-free conditions. Sustain. Sustainable Energy & Fuels, 2021, 5(1), 108-111. DOI: 10.1039/D0SE01257B

[52]Murthy HCA, Abebe B, Eshwaramoorthy R, Ranganathan S. Green synthesis of metal oxide nanomaterials for biofuel production. Nanomaterials. Academic Press, 2021: 237-257. DOI: 10.1016/B978-0-12-822401-4.00028-3

[53]Rahman M, Hayat A. Green synthesis, properties, and catalytic application of zeolite (P) in production of biofuels from bagasse. International Journal of Energy Research, 2019, 43(9), 4820-4827. DOI: 10.1002/er.4628

[54]Lahiri D, Nag M, Ghosh S, Ray RR, Green synthesis of nanoparticles and their applications in the area of bioenergy and biofuel production. Nanomaterials, 2021, 195-219. DOI: 10.1016/B978-0-12-822401-4.00017-9

[55]Perlatti B, Forim MR, Zuin VG. Green chemistry, sustainable agriculture and processing systems: A Brazilian overview. Chemical and Biological Technologies in Agriculture, 2014, 1(1), 5. DOI: 10.1186/s40538-014-0005-1

[56]Bhandari S, Kasana V. Applications of green chemistry principles in agriculture. Green Chem Technol Lett, 2018, 4(2), 10-12. DOI: 10.18510/gctl.2018.421

[57]Fenibo EO, Ijoma GN, Nurmahomed W, Matambo T. The potential and green chemistry attributes of biopesticides for sustainable agriculture. Sustainability, 2022, 14(21), 14417. DOI: 10.3390/su142114417

[58]Hosamani GB, Chandrashekhar SS, Pooja CA, Lakkaboyana SK. Green chemistry in organic farming. Green Chemistry in Agriculture and Food Production, 2023, 68-80.

[59]Fenibo EO, Ijoma GN, Matambo T. Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. Frontiers in Sustainable Food Systems, 2021, 5, 619058. DOI: 10.3389/fsufs.2021.619058.

[60]Srivastava A. Green chemistry: A promising route to sustainable agriculture. International Journal of Innovative Research in Technology, 2023, 9(8), 631-640.

[61]Ubuoh EA. Green chemistry: A panacea for environmental sustainability agriculture in global perspective. Global Journal of Pure and Applied Chemistry Research, 2016, 4(1), 21-29.

[62]Kobayashi S. Green polymer chemistry: Recent developments. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II, 2013, 141-166. DOI: 10.1007/12_2013_236

[63]Worthington MJH, Kucera RL, Chalker JM. Green chemistry and polymers made from sulfur. Green Chemistry, 2017, 19(12), 2748-2761. DOI: 10.1039/C7GC00014F

[64]Cheng HN, Gross RA, Smith PB. Green polymer chemistry: biocatalysis and materials II. American Chemical Society, 2013. DOI: 10.1021/bk-2013-1144.ch001

[65]Ofoegbu O, Ike DC. The influenced trajectory of the application of green chemistry in the current manufacturing of plastic/polymer products. International Journal of New Chemistry, 2023, 11(2), 90-112. DOI: 10.22034/ijnc.2023.2001962.1337

[66]Mülhaupt R. Green polymer chemistry and bio-based plastics: Dreams and reality. Macromolecular Chemistry and Physics, 2013, 214(2), 159-174. DOI: 10.1002/macp.201200439

[67]Cheng HN, Gross RA. Sustainability and green polymer chemistry__An overview. Sustainability & Green Polymer Chemistry Volume 1: Green Products and Processes, 2020, 1-11. DOI: 10.1021/bk-2020-1372.ch001

[68]Sheldon RA, Norton M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chemistry, 2020, 22(19), 6310-6322. DOI: 10.1039/D0GC02630A

[69]Beach ES, Weeks BR, Stern R, Anastas PT. Plastics additives and green chemistry. Pure & Applied Chemistry, 2013, 85(8), 1611-1624. DOI: 10.1351/PAC-CON-12-08-08

[70]Long DC. Greening of consumer cleaning products. Green Techniques for Organic Synthesis and Medicinal Chemistry, 2018, 91-115. DOI: 10.1002/9781119288152.ch5

[71]Harding-Smith E, Shaw DR, Shaw M, Dillon TJ, Carslaw N. Does green mean clean? Volatile organic emissions from regular versus green cleaning products. Environmental Science: Processes & Impacts, 2024, 26(2), 436-450. DOI: 10.1039/D3EM00439B

[72]To MH, Uisan K, Ok YS, Pleissner D, Lin CSK. Recent trends in green and sustainable chemistry: Rethinking textile waste in a circular economy. Current Opinion in Green and Sustainable Chemistry, 2019, 20, 1-10. DOI: 10.1016/j.cogsc.2019.06.002

[73]AKR C. Choudhury, Green chemistry and textile industry. Journal of Textile Engineering & Fashion Technology, 2017, 2(3), 351-361. DOI: 10.15406/JTEFT.2017.02.00056

[74]Pandit P, Singha K, Maity S. Green chemistry in textile and fashion. Chemical Management in Textiles and Fashion, 2021: 177-203. DOI: 10.1016/B978-0-12-820494-8.00009-5

[75]Arif R, Jadoun S, Verma A. Green chemistry in textile industry and their positive impact of implementation. /Green chemistry for sustainable textiles, 2021: 113-119. DOI: 10.1016/B978-0-323-85204-3.00023-3

[76]Roy Choudhury AK. Green chemistry and the textile industry. Textile Progress, 2013, 45(1), 3-143. DOI: 10.1080/00405167.2013.807601

[77]Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A. Green chemistry in the wet processing of textiles. The Impact and Prospects of Green Chemistry for Textile Technology, 2019, 1-20. DOI: 10.1016/B978-0-08-102491-1.00001-0

[78]Moore SB, Ausley LW. Systems thinking and green chemistry in the textile industry: Concepts, technologies and benefits. Journal of Cleaner Production, 2004, 12(6), 585-601. DOI: 10.1016/S0959-6526(03)00058-1

[79]Alviri H, Lynes J, Habib K. Beyond green chemistry: A comprehensive review of how sustainability has been integrated into cosmetic research. Global Sustainability, 2025, 1-52. DOI: 10.1017/sus.2025.5

[80]Secchi M, Castellani V, Collina E, Mirabella N, Sala S. Assessing eco-innovations in green chemistry: Life Cycle Assessment (LCA) of a cosmetic product with a bio-based ingredient. Journal of Cleaner Production, 2016, 129, 269-281. DOI: 10.1016/j.jclepro.2016.04.073

[81]Hitce J, Xu J, Brossat M, Frantz MC, Dublanchet AC, Philippe M, et al. UN sustainable development goals: How can sustainable/green chemistry contribute? Green chemistry as a source of sustainable innovations in the cosmetic industry. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 164-169. DOI: 10.1016/j.cogsc.2018.06.019

[82]Saxe J K, Hoffman L, Labib R. Method to incorporate green chemistry principles in early-stage product design for sustainability: Case studies with personal care products. Green Chemistry, 2022, 24(12), 4969-4980. DOI: 10.1039/D2GC00842D

[83]Franca CCV, Ueno HM. Green cosmetics: Perspectives and challenges in the context of green chemistry. Desenvolvimento e Meio Ambiente, 2020, 53(1), 133-150. DOI: 10.5380/dma.v53i0.62322

[84]Cannon AS, Warner JC. Green chemistry: Foundations in cosmetic sciences.Global Regulatory Issues for the Cosmetics Industry, 2009, 1-16. DOI: 10.1016/B978-0-8155-1569-2.50007-5

[85]Song J, Han B. Green chemistry: A tool for the sustainable development of the chemical industry. National Science Review, 2015, 2(3), 255-256. DOI: 10.1093/nsr/nwu076

[86]Höfer R, Bigorra J. Green chemistry__a sustainable solution for industrial specialties applications. Green Chemistry, 2007, 9(3), 203-212. DOI: 10.1039/B606377B

[87]Gupta AK, Boruah T, Ghosh P, Ikram A, Rana SS, Bachetti A. Green chemistry revolutionizing sustainability in the food industry: A comprehensive review and call to action. Sustainable Chemistry and Pharmacy, 2024, 42, 101774. DOI: 10.1016/j.scp.2024.101774

[88]Angellier-Coussy H, Gastaldi E, Gontard N, Guillaume C, Guillard V, Peyron S. Green chemistry and agro-food industry: towards a sustainable bioeconomy. 2024, 237-267. DOI: 10.1007/978-3-031-54188-9_10

[89]Pallone JAL, dos Santos Caramês ET, Alamar PD. Green analytical chemistry applied in food analysis: Alternative techniques. Current Opinion in Food Science, 2018, 22, 115-121. DOI: 10.1016/j.cofs.2018.01.009

[90]Ballesteros-Vivas D, Socas-Rodríguez B, Mendiola JA, Ibáñez E, Cifuentes A. Green food analysis: Current trends and perspectives. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100522. DOI: 10.1016/j.cogsc.2021.100522

[91]Buttice AL, Stroot JM, Lim DV, Stroot PG, Alcantar NA. Removal of sediment and bacteria from water using green chemistry. Environmental Science & Technology, 2010, 44(9), 3514-3519. DOI: 10.1021/es9030744

[92]Stathoulopoulou A, Demadis KD. Enhancement of silicate solubility by use of ‘green’ additives: linking green chemistry and chemical water treatment. Desalination, 2008, 224(1-3), 223-230. DOI: 10.1016/j.desal.2007.06.007

[93]Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. Journal of Environmental Management, 2022, 311, 114806. DOI: 10.1016/j.jenvman.2022.114806

[94]Kinidi L, Salleh S. Phytoremediation of nitrogen as green chemistry for wastewater treatment system. International Journal of Chemical Engineering, 2017, 2017(1), 1961205. DOI: 10.1155/2017/1961205

[95]Ketsetzi A, Stathoulopoulou A, Demadis KD. Demadis, Being ‘green’ in chemical water treatment technologies: issues, challenges and developments. Desalination, 2008, 223(1-3), 487-493. DOI: 10.1016/j.desal.2007.01.230

[96]Das N, Ojha N, Mandal SK. Wastewater treatment using plant-derived bioflocculants: Green chemistry approach for safe environment. Water Science and Technology, 2021, 83(8), 1797-1812. DOI: 10.2166/wst.2021.100

[97]Ghernaout D, Ghernaout B, Naceur MW. Naceur, Embodying the chemical water treatment in the green chemistry__A review. Desalination, 2011, 271(1-3), 1-10. DOI: 10.1016/j.desal.2011.01.032

[98]Ncube LK, Ude AU, Ogunmuyiwa E N, Beas IN. Characterisation of Bambara groundnut (Vigna subterranea (L.) Verdc.) shell waste as a potential biomass for different bio-based products. Environmental Monitoring and Assessment, 2024, 196(9), 777. DOI: 10.1007/s10661-024-12937-z

[99]Oladosu KO, Babalola SA, Ajao RK, Erinosho MF. Torrefaction of Bambara Groundnut Shell: experimental optimization and prediction of the energy conversion efficiency using statistical and machine learning approaches. International Journal of Ambient Energy, 2024, 45(1), 2277309. DOI: 10.1080/01430750.2023.2277309

[100]Ibrahim MD, Gan S, Abakr YA, Lee LY, Thangalazhy-Gopakumar S. Physicochemical analysis of bambara groundnut shell (BGS) for biofuel production. Chemical Engineering Transactions, 2023, 106, 1249-1254. DOI: 10.3303/CET23106209

[101]Ibrahim MD. Evaluation on thermochemical processes for bioenergy applications of bambara groundnut shell (BGS), shea nut shell (SNS), shea nut chaff (SNC), and sweet sorghum stalk (SSS). University of Nottingham, 2024.

[102]Patzek TW. A first law thermodynamic analysis of biodiesel production from soybean. Bulletin of Science, Technology & Society, 2009, 29(3), 194-204. DOI: 10.1177/0270467609334022

[103]Sohel MI, Jack MW. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: Guiding technology selection and research focus. Bioresource Technology, 2011, 102(3), 2617-2622. DOI: 10.1016/j.biortech.2010.10.032

[104]Cotabarren N, Hegel P, Pereda S. Thermodynamic model for process design, simulation and optimization in the production of biodiesel. Fluid Phase Equilibria, 2014, 362: 108-112. DOI: 10.1016/j.fluid.2013.09.019

[105]Sorguven E, Özilgen M. Thermodynamic assessment of algal biodiesel utilization. Renewable Energy, 2010, 35(9), 1956-1966. 2010, DOI: 10.1016/j.renene.2010.01.024

[106]Ahmed M, Ahmad KA, Vo DVN, Yusuf M, Haq A, Abdullah A, et al. Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Conversion and Management, 2023, 280, 116821. DOI: 10.1016/j.enconman.2023.116821

[107]Souza MF, Hirata GF, Batista EAC. Evaluation of kinetics and thermodynamic parameters for simulation of palm oil biodiesel production. Fluid Phase Equilibria, 2020, 525, 112792. DOI: 10.1016/j.fluid.2020.112792

[108]Sohel MI, Jack MW. Thermodynamic analysis of a high-yield biochemical process for biofuel production. Bioresource Technology, 2012, 124, 406-412. DOI: 10.1016/j.biortech.2012.08.058

[109]Kefas HM, Abubakar AM, Aliyu MJ, Bulus R, Stojchevski M, Soomro SA. Sustainable biodiesel synthesis from oleic acid: Kinetic study with carbonized bambara nutshell catalyst. Latin American Journal of Energy Research, 2024, 11(2), 102-118. DOI: 10.21712/lajer.2024.v11.n2.p102-118

[110]Kefas HM, Silas K, Abubakar AM, Titus A. Oleic fatty acid and carbonized bambara nutshell catalyst in the optimization of biodiesel production using DOE Pro XL. Nigerian Journal of Engineering Science and Technology Research, 2024, 10(2): 223-238.

[111]Ponton JW. Biofuels: Thermodynamic sense and nonsense. Journal of Cleaner Production, 2009, 17(10), 896-899. DOI: 10.1016/j.jclepro.2009.02.003

[112]Khalighi S. Biodiesel production: Determination of thermodynamic properties and monitoring of the transesterification reaction. Universidade de Coimbra (Portugal), 2024.

[113]Sahani S, Roy T, Sharma YC. Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. Journal of Cleaner Production, 2019, 237, 117699. DOI: 10.1016/j.jclepro.2019.117699

[114]Noreen S, Sahar I, Masood N, Iqbal M, Zahid M, Nisar J, et al. Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts. Zeitschrift für Physikalische Chemie, 2021, 235(12), 1673-1688. DOI: 10.1515/zpch-2020-1644

[115]Smaisim GF, Prabu NM, Senthilkumar AP, Abed AM. Synthesis of biodiesel from fish processing waste by nano magnetic catalyst and its thermodynamic analysis. Case Studies in Thermal Engineering, 2022, 35, 102115. DOI: 10.1016/j.csite.2022.102115

[116]Feyzi M, Hosseini N, Yaghobi N, Ezzati R. Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. Chemical Physics Letters, 2017, 677, 19-29. DOI: 10.1016/j.cplett.2017.03.014

[117]Gholipour Zanjani N, Kamran Pirzaman A, Yazdanian E. Biodiesel production in the presence of heterogeneous catalyst of alumina: Study of kinetics and thermodynamics. International Journal of Chemical Kinetics, 2020, 52(7), 472-484. DOI: 10.1002/kin.21363

[118]Ruatpuia JVL, Halder G, Shi D, Halder S, Rokhum SL. Comparative life cycle cost analysis of bio-valorized magnetite nanocatalyst for biodiesel production: Modeling, optimization, kinetics and thermodynamic study. Bioresource Technology, 2024, 393, 130160. DOI: 10.1016/j.biortech.2023.130160

[119]Feyzi M, Shahbazi Z. Preparation, kinetic and thermodynamic studies of Al-Sr nanocatalysts for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 145-155. DOI: 10.1016/j.jtice.2016.11.023

[120]Abubakar AM, Kefas HM, Luka Y, Kawuwa JJ. Revolutionalizing biodiesel synthesis: Kinetic and thermodynamic insights with carbonized doum-shell catalyst. Trends in Ecological and Indoor Environmental Engineering, 2024, 2(2), 11-23. DOI: 10.62622/TEIEE.024.2.2.11-23

[121]Rodrigues JS, do Valle CP, Guerra PAGP, de Sousa Rios MA, de Queiroz Malveira J, Ricardo NM. Study of kinetics and thermodynamic parameters of the degradation process of biodiesel produced from fish viscera oil. Fuel Processing Technology, 2017, 161, 95-100. DOI: 10.1016/j.fuproc.2017.03.013

[122]Saikia K, Das A, Sema AH, Basumatary S, Moyon NS, Mathimani T, et al. Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst. Renewable Energy, 2024, 229, 120743. DOI: 10.1016/j.renene.2024.120743

[123]Vishnupriya M, Ramesh K, Sivakumar P, Sivakumar R. Balasubramanian, and A. Sircar, Kinetic and thermodynamic studies on the extraction of bio oil from Chlorella vulgaris and the subsequent biodiesel production. Chemical Engineering Communications, 2019, 206(3), 409-418. DOI: 10.1080/00986445.2018.1494582

[124]Salim SM, Izriq R, Almaky MM, Al-Abbassi AA. Synthesis and characterization of ZnO nanoparticles for the production of biodiesel by transesterification: Kinetic and thermodynamic studies. Fuel, 2022, 321, 124135. DOI: 10.1016/j.fuel.2022.124135

[125]Farid MAA, Johari SAM, Lease J, Ayoub M, Andou Y. Kinetics and thermodynamics in microwave-assisted transesterification of palm oil utilizing sulphonated bio-graphene catalysts for biodiesel production. Biomass and Bioenergy, 2024, 185, 107236. DOI: 10.1016/j.biombioe.2024.107236

[126]Yatish KV, Omkaresh BR, Kattimani VR, Lalithamba HS, Sakar M, Balakrishna RG. Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies. Energy, 2023, 263, 125768. DOI: 10.1016/j.energy.2022.125768

[127]Sahani S, Sharma YC. Economically viable production of biodiesel using a novel heterogeneous catalyst: Kinetic and thermodynamic investigations. Energy Conversion and Management, 2018, 171, 969-983. DOI: 10.1016/j.enconman.2018.06.059

[128]Chen L, He L, Zheng B, Wei G, Li H, Zhang H, et al. Bifunctional acid-activated montmorillonite catalyzed biodiesel production from non-food oil: Characterization, optimization, kinetic and thermodynamic studies. Fuel Processing Technology, 2023, 250, 107903. DOI: 10.1016/j.fuproc.2023.107903

[129]Zeng D, Yang L, Fang T. Process optimization, kinetic and thermodynamic studies on biodiesel production by supercritical methanol transesterification with CH3ONa catalyst. Fuel, 2017, 203, 739-748. DOI: 10.1016/j.fuel.2017.05.019

[130]Roy T, Sahani S, Sharma YC. Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. Journal of Cleaner Production, 2020, 247, 119166. DOI: 10.1016/j.jclepro.2019.119166

[131]Pugazhendhi A, Alagumalai A, Mathimani T, Atabani AE. Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective. Fuel, 2020, 273, 117725. DOI: 10.1016/j.fuel.2020.117725

[132]Atelge MR. Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis. Renewable Energy, 2022, 198, 1-15. DOI: 10.1016/j.renene.2022.08.018

[133]Mathiarasi R, Partha N. Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production. Renewable Energy, 2016, 96, 583-590. DOI: 10.1016/j.renene.2016.04.078

[134]Tulashie SK, Kotoka F. Kinetics and thermodynamic studies on Moringa oleifera oil extraction for biodiesel production via transesterification. Biofuels, 2022, 13(3), 341-349. DOI: 10.1080/17597269.2019.1697041

[135]Ao S, Greer HF, Alghamdi LA, Rashid U, Halder G, Wheatley AE, et al. Snail shell derived magnetic nanocatalysts for biodiesel production: Process optimization through response surface methodology, kinetics, and thermodynamic studies. Biomass and Bioenergy, 2024, 191, 107442. DOI: 10.1016/j.biombioe.2024.107442

[136]MShaah MA, Hossain MS, Allafi F, Ab Kadir MO, Ahmad MI. Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies. RSC advances, 2022, 12(16), 9845-9861. DOI: 10.1039/D2RA00571A

[137]Shalfoh E, Ahmad M I, Binhweel F, Shaah MA, Senusi W, Alsaadi S, et al. Biomass to biofuel: Optimizing sustainable biodiesel production from fish waste and thermodynamic-kinetic analysis. Biofuels, Bioproducts and Biorefining, 2025, 19(3), 654-677. DOI: 10.1002/bbb.2724

[138]Sun C, Hu Y, Sun F, Sun Y, Song G, Chang H, et al. Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies. Renewable Energy, 2022, 181, 1419-1430. DOI: 10.1016/j.renene.2021.09.122

[139]Nautiyal P, Subramanian KA, Dastidar MG. Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction__transesterification process. Fuel, 2014, 135, 228-234. DOI: 10.1016/j.fuel.2014.06.063

[140]Blanco-Marigorta AM, Suárez-Medina J, Vera-Castellano A. Vera-Castellano, Exergetic analysis of a biodiesel production process from Jatropha curcas. Applied Energy, 2013, 101, 218-225. DOI: 10.1016/j.apenergy.2012.05.037

[141]Huang WD, Zhang YHP. Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy & Environmental Science, 2011, 4(3), 784-792. DOI: 10.1039/C0EE00069H

[142]dos Santos KC, Voll FAP, Corazza ML. Thermodynamic analysis of biodiesel production systems at supercritical conditions. Fluid Phase Equilibria, 2019, 484, 106-113. DOI: 10.1016/j.fluid.2018.11.029

[143]Arce PF, Vieira NF, Igarashi EMS. Thermodynamic modeling and simulation of biodiesel systems at supercritical conditions. Industrial & Engineering Chemistry Research, 2018, 57(2), 751-767. DOI: 10.1021/acs.iecr.7b04195

[144]Sayed MA, Ahmed SA, Othman SI, Allam AA, Al Zoubi W, Ajarem J, et al. Kinetic, thermodynamic, and mechanistic studies on the effect of the preparation method on the catalytic activity of synthetic Zeolite-A during the transesterification of waste cooking oil. Catalysts, 2022, 13(1), 30. DOI: 10.3390/catal13010030

[145]Yusuf BO, Oladepo SA, Ganiyu SA. Biodiesel production from waste cooking oil via β-zeolite-supported sulfated metal oxide catalyst systems. ACS omega, 2023, 8(26), 23720-23732. DOI: 10.1021/acsomega.3c01892

[146]Basumatary SF, Brahma S, Hoque M, Das BK, Selvaraj M, Brahma S, et al. Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources, 2023, 1(3), 100032. DOI: 10.1016/j.gerr.2023.100032

[147]El-Khair MAA, El Naga AOA, Morshedy AS. Rapid and low-temperature biodiesel production from waste cooking oil: Kinetic and thermodynamic insights using a KOH/ZnAl2O4 nanocatalyst derived from waste aluminum foil. Energy Conversion and Management, 2024, 318, 118898. DOI: 10.1016/j.enconman.2024.118898

[148]Osagiede CA, Akhabue CE. Kinetics and thermodynamics studies of the transesterification of waste cooking oil using biochar-based catalyst derived from rubber seed shells. Journal of Science and Technology Research, 2024, 6(2), 319-330. DOI: 10.5281/zenodo.12706977

[149]Suleiman KK, Isah M, Abdulfatai AS, Danyaro Z. Kinetics and thermodynamics study of biodiesel production from neem oil using alumina as a catalyst. Fudma Journal of Sciences, 2023, 7(3), 65-71. DOI: 10.33003/fjs-2023-0703-1851

[150]Yusuff AS. Kinetic and thermodynamic study on the esterification of oleic acid over SO3H-functionalized eucalyptus tree bark biochar catalyst. Scientific Reports, 2022, 12(1), 8653. DOI: 10.1038/s41598-022-12539-0

[151]Li W, Li G, Wang F, Zhu H, He W, Huang J. Optimization and comparison of biodiesel production process by electric heating and microwave-assisted heating transesterification for waste cooking oil via one-way experiments and ANOVA. Frontiers in Environmental Science, 2022, 10, 885453. DOI: 10.3389/fenvs.2022.885453

[152]Nga TTT, Thanh TH, Bình NA, Thành NK, Kiệt HT, Trân NPM. Synthesis heterogeneous catalyst FexOy/CaO from blue crab shell for transesterification of fish fat oil. Tạp chí Khoa học Trường Đại học Sư phạm TP Hồ Chí Minh, 2024, 21(9), 1668-1668. DOI: 10.54607/hcmue.js.21.9.4213(2024)

[153]Pham EC, Le TVT, Le KCT, Ly HHH, Vo BNT, Van Nguyen D, et al. Optimization of microwave-assisted biodiesel production from waste catfish using response surface methodology. Energy Reports, 2022, 8, 5739-5752. DOI: 10.1016/j.egyr.2022.04.036

[154]Yelegen N, Kümük B, Kayan DB, Baran T, Kaplan Y. Enhancing the performance of unitized regenerative proton exchange membrane fuel cells through microwave-synthesized chitosan based nanocomposites. International Journal of Biological Macromolecules, 2024, 282, 137220. DOI: 10.1016/j.ijbiomac.2024.137220

Downloads

Published

2025-12-17

Issue

Section

Articles