

Innovative Energy Systems and Technologies

<https://iest.cultechpub.com/iest>

CulTech Publishing

Article

Green Thermodynamics for Biofuel Synthesis using Bambara Nutshell Catalyst: Toward Sustainable Energy Solutions

Abdulhalim Musa Abubakar^{1,*}, Sergij Vambol², Rashid Shamsuddin³, Marwea AlHedrewy^{4,5}, Jerry Yakubu¹

¹Faculty of Engineering, Department of Chemical Engineering, Modibbo Adama University, Yola, Nigeria

²Department of Occupational and Environmental Safety, National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

³Faculty of Engineering, Department of Chemical Engineering, Islamic University of Madinah, Madinah, Saudi Arabia

⁴Department of Technical Engineering, Islamic University of Najaf, Najaf, Iraq

⁵Department of Technical Engineering, Islamic University of Diwaniyah, Al Diwaniyah, Iraq

*Corresponding author: Abdulhalim Musa Abubakar, abdulhalim@mau.edu.ng

Abstract

In this study, we discussed the green chemistry principle applied to the thermodynamics of biofuel production. As a case study, the study applies green chemistry principles to investigate the thermodynamics of biodiesel synthesis using a heterogeneous catalyst derived from Bambara nutshell (BNS), a renewable agro-waste material. The BNS catalyst was prepared through carbonization and sulfonation and characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM), revealing functional groups and porous morphology favorable for catalysis. Biodiesel was synthesized via esterification of oleic acid at temperatures ranging from 50–65 °C. Thermodynamic parameters including activation energy, enthalpy, entropy, and Gibbs free energy were evaluated across first-, second-, and third-order kinetic models. Results showed that the reaction followed first-order kinetics with the best correlation ($R^2 = 0.9980$), lowest activation energy (51.64 kJ/mol), and most favorable thermodynamic profile—demonstrating low enthalpy (48.80 kJ/mol), less negative entropy (-148.11 J/mol·K), and the lowest Gibbs free energy across tested temperatures. These outcomes confirm the energy efficiency and feasibility of the process, also in support of green chemistry principle 1, 6, 7, 9 and 12. The integration of green chemistry with thermodynamic modeling highlights the potential of BNS as a sustainable, low-cost catalyst for environmentally friendly biodiesel production.

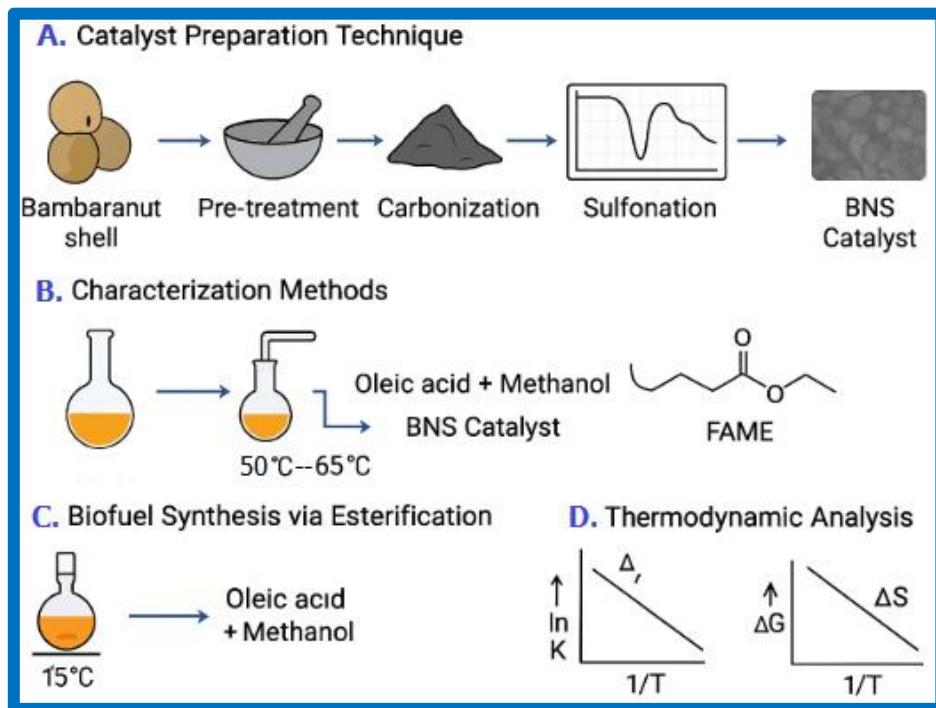
Keywords

Bambara nutshell, Green chemistry, Biodiesel thermodynamics, Oleic acid, Biocatalyst

Article History

Received: 02 September 2025

Revised: 16 November 2025


Accepted: 03 December 2025

Available Online: 17 December 2025

Copyright

© 2025 by the authors. This article is published by the CulTech Publishing Sdn. Bhd. under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0): <https://creativecommons.org/licenses/by/4.0/>

Graphical Abstract

1. Introduction

In the synthesis of biofuels, green chemistry principles are believed to ensure environmental sustainability, safety, and efficiency [1,2]. In essence, green chemistry is a scientific approach that focuses on designing products and processes that minimize the use and generation of hazardous substances [3,4]. Here, biofuels are produced from biological sources such as vegetable oils, waste cooking oil, and agricultural residues, which are renewable and biodegradable. According to Bedenik & Zidak [5], it reduces dependence on fossil fuels and lowers greenhouse gas emissions. Another key principle is energy efficiency [6]. Green chemistry promotes processes that require less energy, such as using microwave-assisted [7-9] or enzymatic methods for biodiesel production [10], which operate at lower temperatures and pressures compared to traditional methods. The principle of waste prevention is also applied in biofuel synthesis, as well as in new feedstock generation and product substitution [11,12]. When *in-situ* transesterification or an integrating reaction and separation steps are utilized, less waste is generated. Table 1 identify the role of green chemistry in biofuel research, as well as other industrial domains. Utilization of green metrics that includes, atom economy, mass intensity/productivity, reaction mass efficiency and E-factor supports the design of safer and highly efficient biodiesel synthesis reactor [13-15]. Constable et al. [16] introduce us to a new metric called reaction mass efficiency. Those metrics were reportedly useful in optimizing biodiesel production from waste cooking oil [17]. In addition, using non-toxic and reusable catalysts, such as solid acid or base catalysts derived from biomass waste, aligns with the principle of safer chemicals and catalysis [18-20]. Catalysts and their design reduce the need for hazardous substances [21-23] and can be recycled or recovered [24]. Ningaraju et al. [25] exemplify the production of powdered biodiesel synthesis catalysts. Naveenkumar & Baskar [26] employed carbon efficiency, reaction mass efficiency, atom economy, environmental factor and stoichiometric factor, as green chemistry parameters for castor-oil biodiesel production using nano-catalyst. Via transesterification or other means, Outili et al. [27] and Gross et al. [28] accommodated the pretreatment stage and characterization of diverse waste cooking oils in biodiesel synthesis. In some cases, the knowledge of biotechnology or metabolic engineering are chipped in [29]. Economically, green chemistry in biorefinery process is the best step going forward [30,31]. Thus, in most manufacturing settings, it minimizes the cost of recovery and environmental health to ensure a circular economy [3,32]. Hjeresen et al. [33] and Idoko et al. [34] argues that contrary to the common myth, innovative technologies can enhance both environmental sustainability and economic profitability in industry. Hydrogenation, asymmetric catalysis, photo-catalysis, chemo-selective oxidation, nano-catalysis and electro-catalysis are methods that involve the use of metallic catalysts [35-39]. Therefore, green chemistry and biocatalysis are key to transforming the chemical industry of the future by enabling cleaner, safer, and more sustainable production processes [40,41].

Table 1. Areas where green chemistry principles are applied.

Area of Application	Description	Ref.
Pharmaceutical Industry	Designing safer drugs with fewer by-products and minimal use of hazardous solvents	[42-50]
Biofuel Production	Using renewable feedstocks, energy-efficient methods, and non-toxic catalysts.	[51-54]
Agriculture	Developing eco-friendly pesticides and fertilizers with minimal environmental impact.	[55-61]
Polymer and Plastics	Creating biodegradable and recyclable polymers from renewable resources.	[62-69]
Cleaning Products	Formulating non-toxic, biodegradable detergents and solvents.	[70,71]
Textile Industry	Replacing harsh dyes and chemicals with natural and safer alternatives.	[72-78]
Cosmetic and Personal Care	Using natural ingredients and eliminating harmful synthetic chemicals.	[79-84]
Chemical Manufacturing	Reducing waste through atom economy, catalysis, and process intensification.	[85,86]
Food Industry	Applying non-toxic preservatives and sustainable packaging materials.	[87-90]
Water Treatment	Using green oxidants and adsorption materials that are non-toxic and reusable.	[91-97]

Bambara nutshell (BNS) is the hard outer shell of the bambara groundnut, a legume scientifically known as *Vigna subterranea*. This nut is widely grown in sub-Saharan Africa, particularly in Nigeria, Ghana, Burkina Faso, and Cameroon, where it serves as a traditional food crop due to its high protein content and resilience to harsh conditions [98]. The nutshell is usually discarded as agricultural waste after the seeds are consumed or processed. Recently, researchers have explored the potential of bambara groundnut shell as a low-cost and eco-friendly bioenergy or biofuel source [99-101]. When treated through calcination or chemical activation, the nutshell is assumed to have the potential to produce materials rich in metal oxides and carbon, which are effective in catalyzing the transesterification of oils into biodiesel. Its high calcium and potassium content makes it especially suitable as a heterogeneous catalyst. Earlier on, Patzek [102] and Sohel & Jack [103] respectively introduced the application of First Law thermodynamics to analyze the production of biodiesel from soybean and other lignocellulosic feedstock. The thermodynamic study of biodiesel production is crucial for optimizing energy efficiency [104], determining reaction feasibility [105], and guiding the design of sustainable and cost-effective processes [106]. For example, Souza et al. [107] tested the thermodynamic parameters for simulation of palm oil biodiesel production using Aspen Plus. Though, not all biodiesel yield corresponds to the thermodynamic efficiency, according to the assessment conducted by Sohel & Jack [108]. Hence, the current study focuses on studying the thermodynamics of biodiesel production using oleic acid and BNS catalyst, in furtherance of the study on kinetic and optimization of the same acid and catalyst by Kefas et al. [109] and Kefas et al. [110], respectively. Apart from the aforementioned studies, there was no study that highlights the role of BNS in biodiesel production as catalyst. The present study will compute the activation energies, enthalpy, entropy and Gibbs-free energies involved in the esterification production of biodiesel using oleic acid and BNS catalyst. The goal is to produce an efficient process. Despite the sense, the nonsense, according to Ponton [111], lies in producing ethanol from grain or maize—particularly in Europe and the USA—because the process is thermodynamically inefficient, uses only part of the plant, and yields less energy than direct combustion. This study addresses the void in thermodynamic information for biodiesel extraction from most feedstock or catalyst, stated as a significant research gap by Khalighi [112].

2. Methods

2.1 Catalyst Preparation Technique

The bambara nut catalyst was prepared through a multi-stage process involving pretreatment, carbonization, and sulfonation. Initially, the BNS were thoroughly washed to eliminate surface impurities and then dried in an air-blast oven at 105 °C to reduce moisture content. The dried shells were ground and sieved to a particle size of 0.125 mm. Approximately 18 g of the sieved BNS powder was carbonized in a furnace at 300 °C for 150 min under an inert nitrogen atmosphere. Following carbonization, 4 g of the resulting biochar was subjected to sulfonation by mixing with 100 mL of concentrated sulfuric acid (H₂SO₄) and heated in an oil bath at a temperature of 95 °C while being magnetically stirred for 350 min under a continuous nitrogen flow. Post-sulfonation, the sample was repeatedly washed with distilled water to remove residual sulfonate ions and acid impurities. The washed catalyst was then dried in an oven at 105 °C for 720 min to remove adsorbed moisture and subsequently stored for characterization and use.

2.2 Characterization Methods

The characterization of the BNS catalyst was carried out using fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques to determine its chemical functionality and surface morphology. FTIR spectroscopy was conducted in the range reported in Sahani et al. [113] and as conducted by Noreen et al. [114]. That is, 400-4000 cm⁻¹ to identify the presence of surface functional groups responsible for catalytic activity. SEM analysis was carried out at an accelerating voltage of 15 kV to examine the surface morphology of the catalyst.

2.3 Biofuel Synthesis via Esterification Process

The synthesis of biodiesel via esterification using the BNS catalyst was conducted in a controlled batch setup. A 250 mL three-neck round-bottom flask equipped with a magnetic stirrer and a reflux condenser was used as the reactor

[115]. In each run, a specific quantity of oleic acid, methanol, and the prepared BNS-based heterogeneous acid catalyst was introduced into the reactor. The methanol-to-oleic acid molar ratio was maintained at 10:1, and the catalyst loading was set at 3 wt.% of the total reaction mixture. The reaction mixture was stirred at 600 rpm to ensure proper mixing, almost close to 700 rpm used by Feyzi et al. [116]. In contrast, the reaction temperature was maintained at various set points of 50, 55, 60 and 65 °C using an atmospheric pressure microwave heating system. Zanjani et al. [117] employed a temperature between 45-55 °C. But in some studies, 65 °C is the optimal temperature employed [113,118,119]. The reaction was allowed to proceed for 180 min, with samples withdrawn at predefined intervals of 1, 5, 10, 30, 60, 90, 110, 130, 150, and 180 min for analysis. Upon reaching each time interval, approximately 7 mL of the reaction mixture was collected into a centrifuge tube and immediately cooled in ice to halt the reaction. After completion of the reaction, the catalyst was separated from the mixture by filtration. Excess methanol and the water formed during the reaction were removed from the product mixture through vacuum distillation. The resulting biodiesel layer was analyzed to determine the free fatty acid (FFA) conversion using the AOCS Ca 5a-40 method. The FFA values of the feed and product were used to calculate the percentage conversion of oleic acid to fatty acid methyl ester (FAME), indicating the catalytic efficiency of the BNS catalyst in the esterification process.

2.4 Thermodynamic Analysis

Thermodynamic analysis of the esterification reaction was conducted to determine the activation energy, enthalpy, entropy, and Gibbs free energy associated with the conversion of oleic acid to biodiesel. The rate constants at different reaction temperatures of 50, 55, 60 and 65 °C were first calculated from kinetic experiments assuming first-, second-, and third-order reaction models, in accordance with Kefas et al. [109]. The Arrhenius equation was applied in its linearized form by plotting the natural logarithm of the rate constant ($\ln k$) against the reciprocal of absolute temperature ($1/T$ in K^{-1}). From the slope and intercept of the Arrhenius plots, the activation energy (E_a) and the pre-exponential factor (A) were determined. Subsequently, the Eyring equation employed by Abubakar et al. [120], in its linearized form, was used to estimate the enthalpy (ΔH) and entropy (ΔS) of activation. This was achieved by plotting $\ln (k/T)$ against $1/T$ and calculating the slope and intercept, from which ΔH was derived from the slope ($-\Delta H/R$) and ΔS from the intercept ($\ln(k_B/h) + \Delta S/R$) [121]. Here, R is the universal gas constant, k_B is Boltzmann's constant, and h is Planck's constant. The Gibbs free energy of activation (ΔG) was then computed at each reaction temperature using the relation $\Delta G = \Delta H - T\Delta S$. To garner insights into the energy profile and molecular orderliness of the reaction system, the determined thermodynamic parameters are then interpreted. Afterwards, the equilibrium constant, K^* was computed using the expression $e^{-\Delta G/RT}$.

3. Results and Discussion

3.1 Catalyst Characterization

FTIR spectrum of the BNS catalyst reveals the presence of several key functional groups that contribute to its catalytic potential in biofuel production. A broad peak observed around 3444 and 3349 cm^{-1} corresponds to -OH and -NH stretching vibrations, indicating the presence of hydroxyl and amine groups. Such groups are often associated with improved adsorption and catalytic interaction with reactants during transesterification reactions. Another peak at 2944 cm^{-1} is attributed to C-H stretching, which suggests the presence of aliphatic hydrocarbon chains. The appearance of peaks around 1659 and 1638 cm^{-1} reflects C=O stretching and C=C or N-H bending, respectively, which are commonly found in lignin-based or carbonaceous materials derived from biomass. It supports the idea that the BNS underwent thermal and chemical changes to form active carbon-like or ash-supported catalytic surfaces. In Table 2, the band near 1106 and 1068 cm^{-1} indicates C-O or C-N bonds, which confirms the presence of ether or amine functionalities. They are believed to participate in hydrogen bonding or surface interactions that improve the thermodynamic favorability of ester bond formation in biodiesel synthesis. Other peaks such as those at 791 and 677 cm^{-1} are associated with aromatic or out-of-plane bending, both highlighting the complex but reactive surface of the catalyst employed.

As such, the FTIR spectrum confirms that the BNS catalyst contains a rich variety of surface functional groups, many of which are capable of facilitating low-energy, solvent-free biofuel synthesis. This aligns directly with green chemistry principles. Principle 1 on prevention, is the use of an agricultural waste-like BNS prevents waste accumulation. Next, 'Principle 7' involving the use of renewable feedstocks, is because the catalyst itself is derived from a renewable biomass source. In 'Principle 6', which is 'design for energy efficiency', the presence of reactive sites reduces the energy barrier for biodiesel production. As for 'Principle 9', which is catalysis, the catalyst enhances reaction rates and selectivity without being consumed. Principle 12 has to do with an 'inherently safer chemistry'. That is to say, using naturally derived catalysts herein, limits toxicity and hazard risk. Figure 1 is a SEM image taken at 100 μm magnification, while Figure 2 is taken at a lower magnification of 500 μm . The main difference is the level of detail. Evidently, Figure 1 shows a closer, more detailed view of the surface, whereas Figure 2 shows a broader, more general view of the catalyst particles and their overall structure.

Table 2. BNS catalyst ftir peaks.

S/No.	Wavenumber (cm ⁻¹)	Observation/Note
1.	3966.5796	Broad peak (O-H/N-H stretching)
2.	3444.9798	Strong, likely O-H stretching (alcohols)
3.	3349.5111	N-H stretching (amines)
4.	2944.4404	C-H stretching (alkanes)
5.	2715.3777	Possibly aldehyde C-H stretch
6.	2476.487	Possibly CO ₂ or -SH group
7.	2365.0312	CO ₂ or atmospheric interference
8.	2000.2434	Possibly triple bond C≡C stretch
9.	1894.6182	C=O overtone region
10.	1659.6484	C=O stretching (amide I)
11.	1638.8687	C=C or N-H bending (amide II)
12.	1466.6667	C-H bending (methylene group)
13.	1106.5451	C-O or C-N stretching
14.	1068.8566	C-O stretching (ethers)
15.	791.7657	Aromatic C-H bending
16.	677.3359	Out-of-plane bending (C-H)

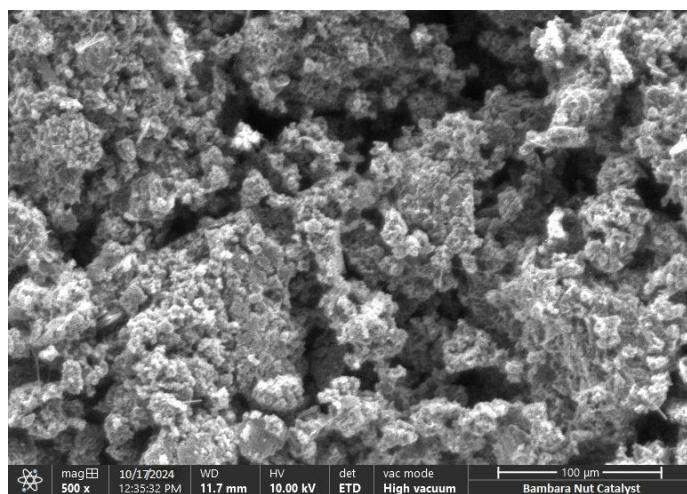
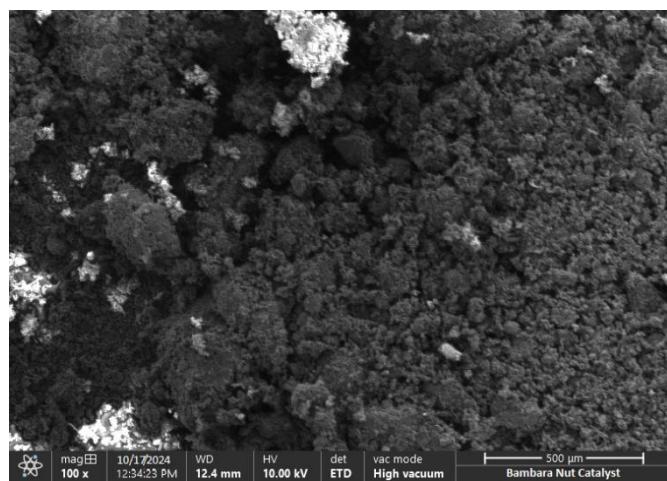
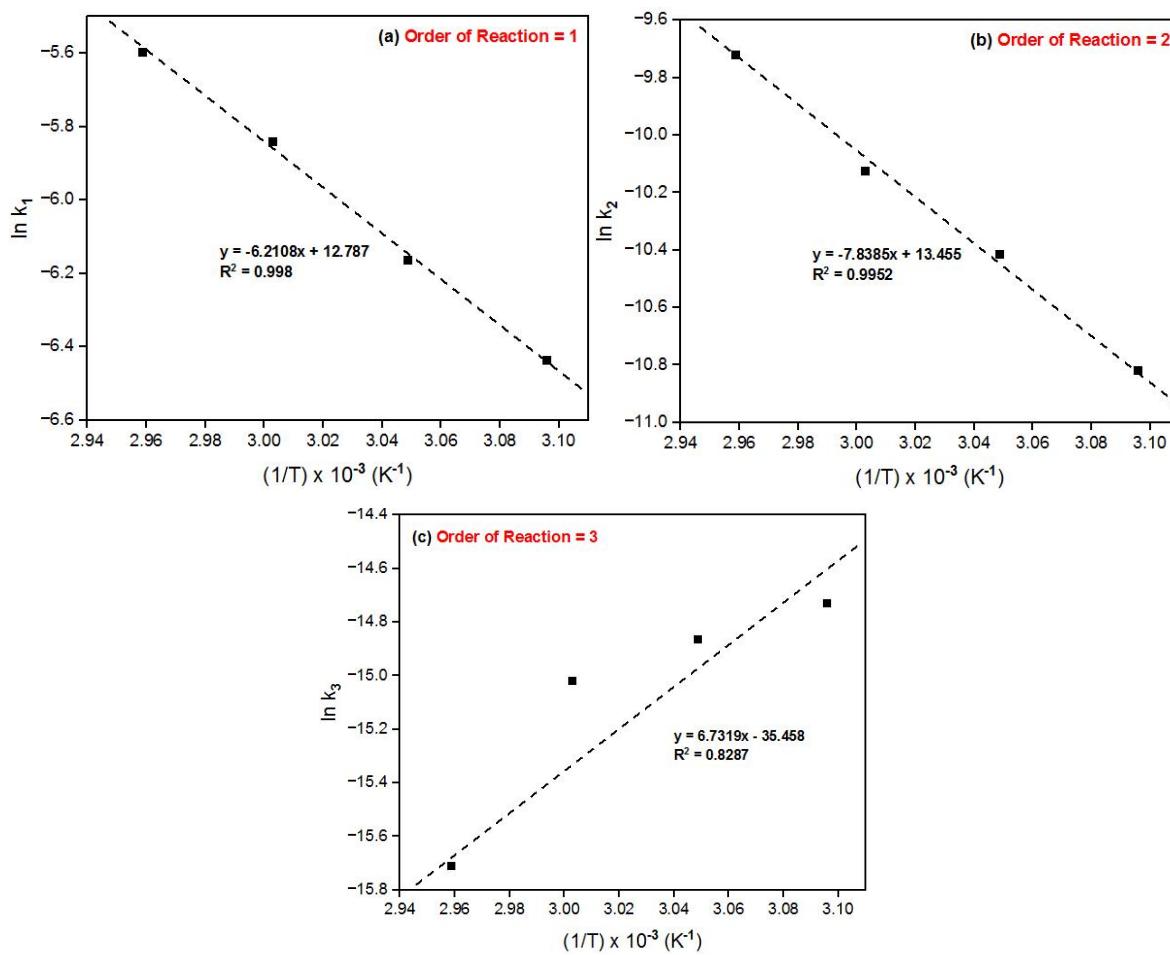



Figure 1. A 100 μm BNS catalyst SEM image.**Figure 2.** A 500 μm BNS catalyst SEM image.

Figure 1 reveals fine surface features comprising of pores, cracks, and rough textures on the catalyst surface. They are important for understanding how the catalyst can interact with reactants. Pores increase the surface area, which is critical for catalytic activity. More surface area means more active sites are available for the reaction. Additionally, the cracks and uneven texture help in adsorbing and interacting with reactant molecules during the esterification process. On the other hand, Figure 2 reveals the overall shape, particle size distribution, and macro-structural arrangement of the catalyst. It helps in assessing the uniformity, agglomeration, or clustering of the particles. While SEM shows morphology and surface structure, it does not provide chemical information. It does not indicate thermal stability, acidity, or reusability of the catalyst. Also, SEM cannot quantify how well the catalyst performs during the reaction—it

only gives a visual suggestion. Specialized analysis, involving Brunauer-Emmett-Teller (BET), X-Ray Diffraction (XRD) and Thermogravimetric Analysis (TGA) are needed to add the missing ingredient, as conducted by Saikia et al. [122]. Despite that, the visible porosity supports green chemistry by implying low-energy pathways and efficient reactant conversion.

3.2 Thermodynamic Parameters

Figures 3 (a-c) show Arrhenius plots for first-, second-, and third-order reactions, respectively. Each graph plots $\ln k$ against $1/T$ to determine activation energy [123]. In the first-order plot (Figure 3a), it is observed that it has a nearly perfect straight line, showing a strong correlation. Majority of studies, including those by Salim et al. [124], aligns with the first-order description. The second-order (Figure 3b) also follows a linear trend but less accurately. Third-order (or Figure 3c) plot shows a scattered and weakly linear trend. Figure 1c looks different because the third-order model does not fit the data well. The R^2 value is low, and the points do not align in a straight line, which suggests that the reaction does not follow third-order kinetics. It is unlikely that simple adjustments can make the data follow a third-order model. The deviation likely comes from the actual mechanism of the reaction. However, using different experimental conditions, catalysts, or higher accuracy measurements might offer better alignment—but this is speculative. Presumably, the rate constants (k) change with temperature for each reaction order, so that k_1 and k_2 increase consistently with temperature. Basically, it supports the expected behavior of the reactions. However, k_3 values are less predictable.

Figure 3. Arrhenius plot based on presumed reaction order: (a) 1, (b) 2, and (c) 3.

From Figure 3 and Table 3, it is observed that the first-order reaction model has the highest R^2 value of 0.9980. Therefore, it best explains the experimental data compared to second-order ($R^2 = 0.9952$) and third-order ($R^2 = 0.8287$) models. Using the same microwave heating employed in this study, Farid et al. [125] found that the first order model is the best. A positive E_a means that the reaction needs an input of energy to start; this is common in most chemical reactions. A negative E_a , which is not observed in this study, would imply that the reaction becomes faster as temperature decreases, which is rare and often suggests a complex or surface-driven mechanism. Clearly, $E_a = 51.64$ kJ/mol is lower in the first-order reaction because the reaction mechanism involves fewer molecular interactions and requires less energy to proceed. In the second-order case, the reaction may involve more complex interactions between molecules, thus needing more energy (up to 65.17 kJ/mol) to reach the transition state. In this situation, it reflects the nature of the reacting species and the pathway they follow. The k_o indicates how often molecules collide in the right orientation to react. A far lower k_o value of 3.02 min^{-1} was reported by Yatish et al. [126] during thermodynamics of biodiesel synthesis using *Butea monosperma* oil. A high value means frequent and effective collisions. While high k_o

can support faster reactions, it must be considered along with E_a . In this study, the reported k_o values; especially for $n = 1$ and 2 are too high compared to 7.94 min^{-1} in Sahani & Sharma [127]. A closer k_o value from previous study by Rodrigues et al. [121] is $4.35 \times 10^8 \text{ min}^{-1}$ or $2.61 \times 10^{10} \text{ h}^{-1}$. A lower k_o as in 3.988×10^{-16} , doesn't mean poor performance, especially if the catalyst facilitates lower energy barriers.

Table 3. Arrhenius kinetic parameters computed.

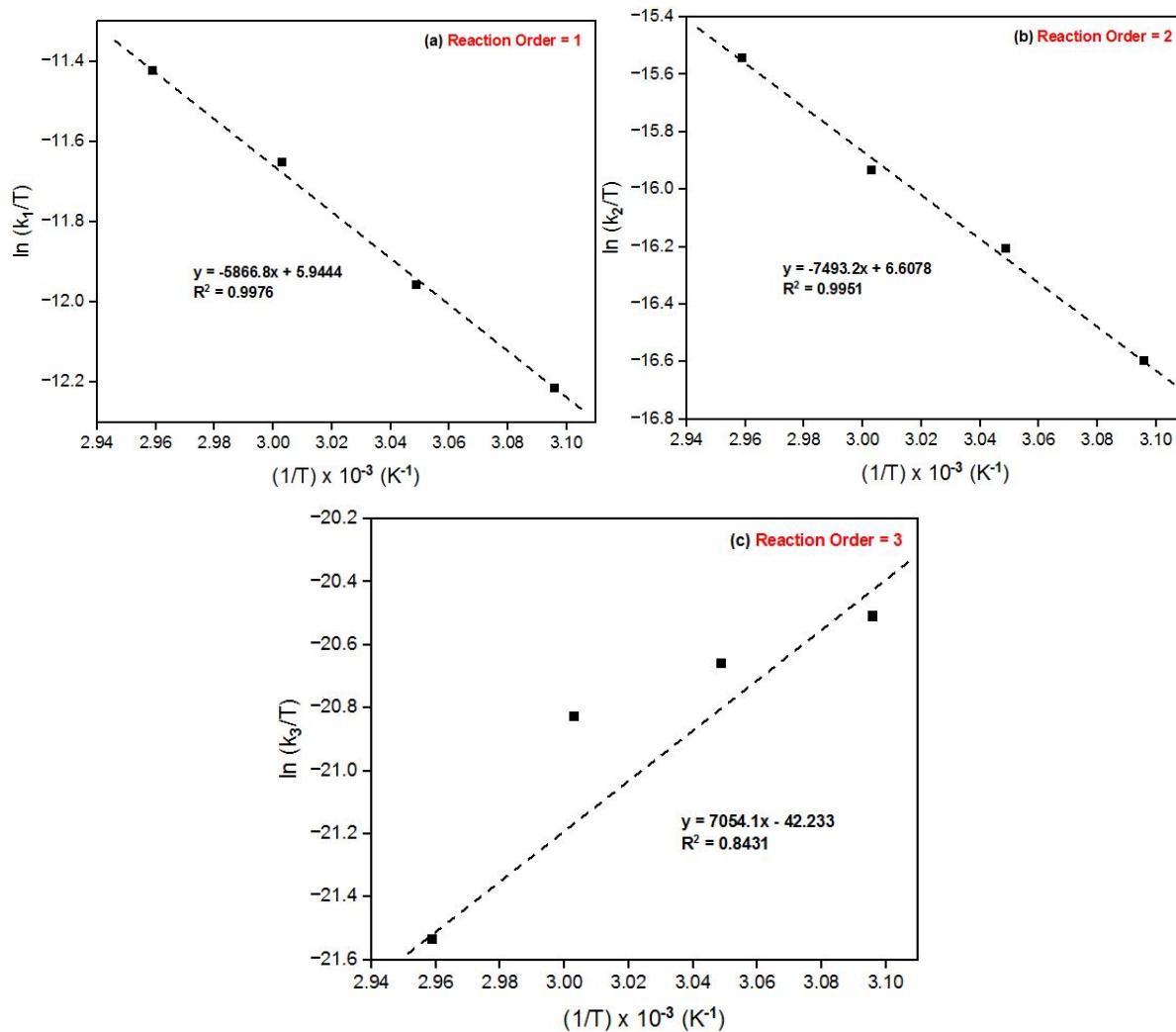

Order	Parameter	Value
n = 1	E_a (kJ/mol)	51.64
	k_o (min^{-1})	3.575×10^5
	R^2	0.9980
n = 2	E_a (kJ/mol)	65.17
	k_o (min^{-1})	6.973×10^5
	R^2	0.9952
n = 3	E_a (kJ/mol)	-55.97
	k_o (min^{-1})	3.988×10^{-16}
	R^2	0.8287

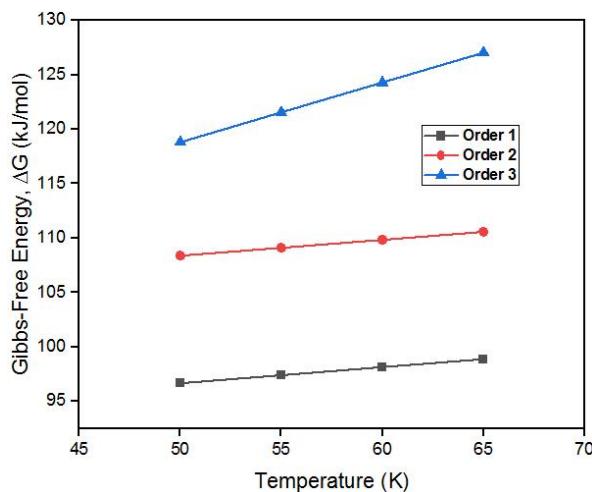
Table 3 shows that the first-order reaction has a relatively low E_a . By implication, less energy is needed to drive the process, which aligns with the green chemistry principle of energy efficiency (Principle 6). Using a catalyst that lowers E_a supports environmentally friendly processes by reducing the overall energy demand. Several studies have computed the foregone Arrhenius constants in their respective studies, as shown in Table 4. Apart from food oils explored by Noreen et al. [114], non-food oils can be employed [128]. A general trend observed is that first-order kinetics is the most frequently reported and favored reaction order across multiple feedstocks and catalyst types. It suggests that the transesterification reaction often follows a pseudo-first-order mechanism when alcohol is in excess. The E_a values vary widely—from as low as 12.12 kJ/mol for rapeseed oil with $\text{K}_2\text{CO}_3/\text{Al}_2\text{O}_3$ catalyst, to as high as 77.6 kJ/mol for sunflower oil using $\text{MgO}-\text{La}_2\text{O}_3$ nanocatalysts. Such variation can be attributed to differences in catalyst nature, oil properties, and reaction conditions. Notably, lower activation energies typically reflect higher catalytic efficiency and easier reaction pathways, as seen with catalysts like sulfonyl chloride (25.05 kJ/mol for *Datura metel* oil) and barium lanthanum oxide (34.44 kJ/mol for Mahua oil).

Table 4. Previous report on activation energies determined for various catalysts.

Best Order	Activation Energy (kJ/mol)	Acid or Oil Type	Catalyst	Ref.
1.287	12.12	Rapeseed oil	$\text{K}_2\text{CO}_3/\text{Al}_2\text{O}_3$	[117]
1	72.86	Sunflower oil	Al-Sr nanocatalysts	[119]
1	34.44	<i>Madhuca indica</i> (Mahua) oil	Barium lanthanum oxide	[127]
1.5	27.06	Soybean oil	CH_3ONa	[129]
2	77.6	Sunflower oil	$\text{MgO}-\text{La}_2\text{O}_3$ nanocatalysts	[116]
1	50.1 & 48.55	Cooking oil and castor oil	Potassium modified ceria oxide	[130]
1	57.82	Cooking oil	NR	[131]
NR	19.15	Cooking oil	Spent coffee grounds	[132]
1	59.31	Fish oil	Nano magnetic	[115]
1	25.051	<i>Daturametel Linn</i> seed oil	Sulfuryl chloride	[133]
NR	33.14	<i>Moringa oleifera</i> oil	KOCH_3	[134]
1	42.5	Soybean oil	Calcium oxide-magnetite nanocomposites	[135]
2	28.35	Candlenut oil	Non-catalytic	[136]
1	51.64	Oleic acid	BNS	This Study

Based on the linearity and R^2 values in Figure 4 and Table 5, it can be said that the first-order ($R^2 = 0.9976$) gives the 'best fit', second-order with $R^2 = 0.9951$ is described as portraying a 'good fit' and, the third-order model presents a 'poor fit'. In Shalfoh et al. [137]'s study using sodium hydroxide (NaOH) as catalyst, the second-order model performed best. Again, Figure 3 (Arrhenius plot) and Figure 4 (Eyring plot) both shows how well each reaction order fits the experimental data. In both figures, the first-order reaction shows the most linear behavior, indicating consistent kinetics and thermodynamics. The third-order plots in both figures are scattered, showing a poor fit. This consistency between figures confirms that the reaction is best described by first-order kinetics.

Figure 4. Graphical determination of enthalpy and entropy energy changes: (a) 1, (b) 2, and (c) 3.


Moreover, the first-order reaction performed best in Table 5 with the lowest enthalpy of 48.80 kJ/mol and the best R^2 value. The enthalpy increases in the second order (62.29 kJ/mol) because more energy is required to initiate and sustain interactions between multiple reacting molecules. Thus, making the system less efficient thermodynamically. A positive enthalpy means the reaction is endothermic—it absorbs heat from the surroundings [136]. This can still be favorable in green chemistry if the reaction runs at mild temperatures and the energy input is from renewable sources. Negative ΔH would imply an exothermic reaction, typically more energy-efficient. In this case, even though the enthalpy is positive, it supports green chemistry because the energy required is not excessive, and the catalyst helps reduce overall energy demand. It is better for enthalpy to be low in biodiesel production (as in order 1). Lower ΔH means less energy is needed to drive the reaction, which is more energy-efficient and cost-effective—thus, in line with green chemistry attributes of low energy consumption. As against this, Feyzi & Shahbazi [119] and Feyzi et al. [116] respectively obtained a $\Delta H = 215.02$ and 162 kJ/mol higher than in this study.

A negative ΔS means that the system becomes more ordered as the reaction proceeds, as also observed in -241.25 J/mol value obtained by Mathiarasi & Partha [133]. In this esterification process, the reaction moves from two reactants (oleic acid and methanol) to a single biodiesel product, which leads to a decrease in randomness or molecular disorder. So, the negative ΔS here is expected and acceptable. The first-order reaction has the least negative ΔS (-148.11 J/mol·K), while the third-order has the most negative value (-548.82 J/mol·K). A less negative (or closer to zero) entropy is more favorable because it indicates less loss of disorder. Therefore, first-order is best in terms of ΔS . Higher (less negative) ΔS is preferable, because it suggests less restriction in molecular motion and energy distribution, which can support a more spontaneous and efficient reaction. Extremely negative entropy, as in -284.6 J/mol·K in Sun et al. [138] means the system becomes too ordered, which is usually less favorable energetically. Since ΔS is negative for all orders, as temperature (T) increases, $-T\Delta S$ becomes more positive, thereby increasing ΔG . This explains why Gibbs free energy increases with temperature in all cases in Table 5. According to Nautiyal et al. [139], the negative value of ΔS and the positive values of ΔG and ΔH , explains why the reaction is uns spontaneous and endergonic. The moderate negative ΔS and positive ΔG values indicate that the reaction becomes more ordered and requires energy input, which aligns with green chemistry. Figure 5 depicts the increase in ΔG with temperature surge for all order of reaction. Across all reaction

orders, the ΔG values remain positive within 50–65 °C. It points to the fact that the esterification is non-spontaneous and requires an external energy input; however, the magnitude and trend of ΔG vary with temperature and reaction order.

Table 5. Enthalpy, entropy and Gibbs free energy changes determined.

Order	Parameter	Value
n = 1	ΔH (kJ/mol)	48.80
	ΔS (J/mol.K)	-148.11
	ΔG at 50 °C (kJ/mol)	96.66
	ΔG at 55 °C (kJ/mol)	97.40
	ΔG at 60 °C (kJ/mol)	98.14
	ΔG at 65 °C (kJ/mol)	98.88
	K^* at 50 °C	2.33×10^{-16}
	K^* at 55 °C	3.14×10^{-16}
	K^* at 60 °C	4.21×10^{-16}
	K^* at 65 °C	5.54×10^{-16}
n = 2	R^2	0.9976
	ΔH (kJ/mol)	62.29
	ΔS (J/mol.K)	-142.63
	ΔG at 50 °C (kJ/mol)	108.39
	ΔG at 55 °C (kJ/mol)	109.11
	ΔG at 60 °C (kJ/mol)	109.84
	ΔG at 65 °C (kJ/mol)	110.57
	K^* at 50 °C	3.04×10^{-18}
	K^* at 55 °C	4.00×10^{-18}
	K^* at 60 °C	5.27×10^{-18}
n = 3	K^* at 65 °C	6.82×10^{-18}
	R^2	0.9951
	ΔH (kJ/mol)	-58.64
	ΔS (J/mol.K)	-548.82
	ΔG at 50 °C (kJ/mol)	118.80
	ΔG at 55 °C (kJ/mol)	121.55
	ΔG at 60 °C (kJ/mol)	124.30
	ΔG at 65 °C (kJ/mol)	127.04
	K^* at 50 °C	5.30×10^{-20}
	K^* at 55 °C	3.48×10^{-20}
	K^* at 60 °C	2.59×10^{-20}
	K^* at 65 °C	1.98×10^{-20}
	R^2	0.8431

Figure 5. Change in Gibbs free energy with reaction temperature rise.

Higher Gibbs free energy is not preferable. As reported by Farid et al. [125] and Tulashie & Kotoka [134], a lower or negative ΔG is more favorable because it indicates that the reaction is spontaneous. Roy et al. [130] realized a ΔG of 90.85 and 92.66 kJ/mol in consonance with the current thermodynamic study at $n = 1$, where the average is 97.77 kJ/mol. In green chemistry, spontaneous or low-energy reactions are desired to reduce energy input and environmental impact. So, higher ΔG goes against this goal. At 65 °C, the ΔG for order 3 is almost close to the findings of Zeng et al. [129] who obtained 137.43 kJ/mol. The K^* reflects the extent to which a reaction proceeds toward product formation at equilibrium, and it is directly influenced by the thermodynamic parameters— ΔH , ΔS and ΔG . For the first-order reaction, despite the positive ΔG values across all temperatures which suggest non-spontaneity, the slight increase in K^* from 2.33×10^{-16} at 50 °C to 5.54×10^{-16} at 65 °C implies that the reaction becomes marginally more favorable at higher

temperatures. This trend is consistent with the behavior of endothermic reactions, where increased temperature shifts the equilibrium toward the products. Nevertheless, the K^* in second-order are lower than those of the first-order case, which suggest a lower extent of reaction. Correspondingly, K^* decreases with temperature in third-order, aligning with expectations for an exothermic reaction, where increasing temperature drives the equilibrium backward. Chemical reactions occasionally cause most of the irreversibility of the process [140]. Thus, based on K^* , first-order reaction model provides the best thermodynamic and statistical consistency. It is important if similar studies are extended to producing bioethanol, biobutanol and biohydrogen [141], including at supercritical conditions [142,143]. In Table 6, E_a , ΔH , ΔS and ΔG reported previously in the literature for other catalyst types are documented. For industrial implementation, we recommend pilot-scale trials addressing catalyst stability/recyclability, metal leaching, and mass-transfer limitations to ensure long-term performance and environmental compliance.

Table 6. Biodiesel thermodynamic parameters from the literature.

Catalyst Type	Reaction Condition	Thermodynamic Parameter	Ref.
H.ZA & DH.ZA	H.ZA optimum: 80 °C, MeOH/oil 14:1, 3 wt.% & 120 min; DH.ZA optimum: 60 °C, MeOH/oil 12:1, 3 wt.% & 60 min	E_a : H.ZA = 35.9 & DH.ZA = 32.714 kJ·mol ⁻¹ . ΔH^* : H.ZA = 33.23 & DH.ZA = 30.03 kJ·mol ⁻¹ . ΔS^* : H.ZA = -195.59 & DH.ZA = -195.91 J K ⁻¹ mol ⁻¹	[144]
SO ₄ ²⁻ /ZnO-β-zeolite (β-zeolite supported sulfated metal-oxide)	3 wt. % catalyst loading, 200 °C reaction temp., 15:1 molar ratio of methanol to oil & 8 h reaction time	E_a = 38.58 kJ mol ⁻¹	[145]
CaO/Ag nanocatalyst	NR	E_a = 43.73 kJ mol ⁻¹	[146]
KOH/ZnAl ₂ O ₄ nanocatalyst	4 wt.% catalyst, 90 min & 9:1 M:O-MR	E_a = 42.57 kJ mol ⁻¹	[147]
Biochar-based catalyst from rubber-seed shells	65 °C	E_a = 36.6 kJ mol ⁻¹ , ΔH = 33.9 kJ mol ⁻¹ & ΔS = -0.180 kJ mol ⁻¹	[148]
Alumina	Methanol to oil molar ratio = 6:1 & 323, 328 and 333 K	E_a = 46.19 kJ mol ⁻¹ ; ΔH = 43.78 kJ mol ⁻¹ ; ΔS = -0.129 kJ mol ⁻¹ K ⁻¹ & ΔG = 90.68, 92.13, and 93.58 kJ mol ⁻¹	[149]
SO ₃ H-functionalized eucalyptus tree bark biochar	80 °C, 5 h reaction time, catalyst loading = 4 wt.% & 8:1 methanol/OA molar ratio	E_a = 81.77 kJ mol ⁻¹ ; ΔH = 78.94 kJ mol ⁻¹ ; ΔS = 135.3 J mol ⁻¹ K ⁻¹ & ΔG = 33.03 kJ mol ⁻¹	[150]
BNS	3 wt.% catalyst loading, 600 rpm stirring, 10:1 methanol-oleic acid ratio, 180 min reaction time & 50-65°C	E_a = 51.64 kJ mol ⁻¹ ; ΔH = 48.8 kJ mol ⁻¹ ; ΔS = -148.11 J mol ⁻¹ K ⁻¹ & ΔG = 96.66 kJ mol ⁻¹ (at 50 °C)	This Study

Note: ZA—Zeolite-A; H.ZA—Hydrated Phase ZA; DH.ZA—Dehydrated Phase ZA.

Table 6 does not report the recyclability of the catalyst employed. In this study, the BNS catalyst was only able to sustain one effective reaction cycle. Presumably, there is limited structural or active site stability under the reaction conditions. It suggests that further modification or reinforcement of the catalyst is required to improve its reusability and practical applicability. A study by Li et al. [151] shows that microwave heating achieved a 'k' value about 10-20 \times higher than conventional heating and significantly reduced the E_a . Nga et al. [152] explicitly report their Fe_xO_y/CaO catalyst sieved to 0.125 mm, which is similar to BNS size used herein. However, the particle activity cannot be analyzed under different conditions looked at in both studies. Also, no particle size of the heterogeneous catalyst reported in Pham et al. [153], was mentioned using microwave. The 0.125 mm (\approx 125,000 nm) BNS catalyst is about 500,000% larger in particle size compared to the 20-30 nm electrocatalyst reported in Yelegen et al. [154]. Compared to previous biomass-derived catalysts, this study employs the BNS catalyst under milder reaction temperatures (50-65 °C) and moderate methanol-to-oil ratios. The study demonstrated an effective performance without requiring the high temperatures (\geq 80 °C) or prolonged reaction times often reported in earlier works. Many previous catalysts showed lower E_a values. In contrast, the thermodynamic profile of BNS (ΔH = 48.8 kJ mol⁻¹ and ΔS = -148.11 J mol⁻¹ K⁻¹) indicates a more ordered transition state that aligns with a controlled and energy-efficient reaction environment. Unlike studies that rely on highly functionalized or metal-supported catalysts, this work uses a simpler, low-cost biomass precursor, to support sustainability and ease of preparation. Thus, BNS catalyst balances practical reaction conditions with competitive thermodynamic behavior. It distinguishes it from previous systems in Table 6 that either require harsher operating conditions or more complex modification steps.

4. Conclusion

This study successfully demonstrated the application of green chemistry principles in the thermodynamic assessment of biodiesel synthesis using a catalyst derived from BNS, an abundant agricultural waste. The characterization of the BNS catalyst confirmed the presence of key functional groups and porous morphology, which contributed to its high catalytic activity. Kinetic and thermodynamic evaluations revealed that the esterification reaction best follows a first-order

mechanism, with favorable activation energy, enthalpy, and Gibbs free energy values. Among the three reaction orders studied, the first-order model showed the highest linearity ($R^2 = 0.9980$), the lowest activation energy (51.64 kJ/mol), and the most thermodynamically efficient profile with the least enthalpy (48.80 kJ/mol), less negative entropy (-148.11 J/mol·K), and lowest Gibbs free energy across all temperatures tested. These values indicate an energy-efficient, entropy-driven, and feasible reaction pathway. The use of BNS aligns with several green chemistry principles, including waste valorization, energy efficiency, catalysis, and the use of renewable resources. The findings had validated the thermodynamic viability of BNS in biodiesel production and also emphasized its potential to reduce environmental impact and enhance sustainability. BET surface area analysis, Barrett-Joyner-Halenda (BJH) pore size distribution, TGA, XRD, and Inductively Coupled Plasma Optical Emission Spectroscopy/Mass Spectrometry (ICP-OES/ICP-MS) should be conducted for enhanced description of the catalyst performance. In the next study, atom economy, mass intensity/productivity, reaction mass efficiency and E-factor are green metrics that should be computed.

Conflicts of Interests

The authors declare that they have no conflicts of interests.

Generative AI Statement

The authors declare that no Gen AI was used in the creation of this manuscript.

References

- [1] Sheldon R A, Arends I, Hanefeld U. Green chemistry and catalysis. John Wiley & Sons, 2007. DOI: 10.1002/9783527611003
- [2] Anastas P, Eghbali N. Green chemistry: Principles and practice. Chemical Society Reviews, 2010, 39(1), 301-312. DOI: 10.1039/B918763B
- [3] Adam DH, Elvina, Hasibuan MNS, Syahputra Pasaribu RLH, Suriyani. Green chemistry: The economic impact perspective. International Journal of Scientific & Technology Research, 2020, 9(4), 471-473. DOI: 10.31219/osf.io/gqe63
- [4] Sheldon RA. Green chemistry and resource efficiency: Towards a green economy. Green Chemistry, 2016, 18(11), 3180-3183. DOI: 10.1039/C6GC90040B
- [5] Bedenik NO, Zidak N. Green economy supported by green chemistry. Eurasian Journal of Business and Management, 2019, 7(2), 49-57. DOI: 10.15604/ejbm.2019.07.02.005
- [6] Listyarini RV, Pamenang FDN, Dewi NK. Guided-inquiry of green chemistry-based experiments in biodiesel synthesis. Scientiae Educatia: Jurnal Pendidikan Sains, 2020, 9(1), 14-29. DOI: 10.24235/sc.educatia.v9i1.6283
- [7] Gude VG, Martinez-Guerra E. Green chemistry of microwave-enhanced biodiesel production. Production of Biofuels and Chemicals with Microwave. Dordrecht: Springer Netherlands, 2014, 225-250. DOI: 10.1007/978-94-017-9612-5_11
- [8] Amesho KTT, Lin YC, Chen CE, Cheng PC, Shangdiar S. Kinetics studies of sustainable biodiesel synthesis from Jatropha curcas oil by exploiting bio-waste derived CaO-based heterogeneous catalyst via microwave heating system as a green chemistry technique. Fuel, 2022, 323, 123876. DOI: 10.1016/j.fuel.2022.123876
- [9] Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chemistry, 2010, 12(5), 743-754. DOI: 10.1039/B921171C
- [10] Bezbradica D, Crovic M J, Tanaskovic S, Lukovic N, Carevic M, Milivojevic A, et al. Enzymatic syntheses of esters—Green chemistry for valuable food, fuel and fine chemicals. Current Organic Chemistry, 2017, 21(2), 104-138. DOI: 10.2174/1385272821666161108123326
- [11] Ncube A, Mtetwa S, Bukhari M, Fiorentino G, Passaro R. Circular economy and green chemistry: The need for radical innovative approaches in the design for new products. Energies, 2023, 16(4), 1752. DOI: 10.3390/en16041752
- [12] Clark JH, Luque R, Matharu AS. Matharu, Green chemistry, biofuels, and biorefinery. Annual Review of Chemical and Biomolecular Engineering, 2012, 3(1), 183-207. DOI: 10.1146/annurev-chembioeng-062011-081014
- [13] Sheldon RA. E factors, green chemistry and catalysis: An odyssey. Chemical Communications, 2008, (29), 3352-3365. DOI: 10.1039/B803584A
- [14] Sheldon RA. Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 2012, 41(4), 1437-1451. DOI: 10.1039/C1CS15219J
- [15] Gude VG, Martinez-Guerra E. Green chemistry with process intensification for sustainable biodiesel production. Environmental Chemistry Letters, 2018, 16(2), 327-341. DOI: 10.1007/s10311-017-0680-9
- [16] Constable DJC, Curzons AD, Cunningham VL. Cunningham, metrics to ‘green’ chemistry—which are the best? Green Chemistry, 2002, 4(6), 521-527. DOI: 10.1039/B206169B
- [17] Outili N, Kerras H, Nekkab C, Merouani R, Meniai AH. Biodiesel production optimization from waste cooking oil using green chemistry metrics. Renewable Energy, 2020, 145, 2575-2586. DOI: 10.1016/j.renene.2019.07.152
- [18] Nagendrappa G. Organic synthesis using clay catalysts: clays for ‘green chemistry’. Resonance, 2002, 7(1), 64-77. DOI: 10.1007/BF02836172
- [19] Dias JA, Caliman E, Dias SCL, Paulo M, de Souz ATCP. Preparation and characterization of supported H3PW12O40 on silica gel: A potential catalyst for green chemistry processes. Catalysis Today, 2003, 85(1), 39-48. DOI: 10.1016/S0920-5861(03)00192-5
- [20] Sheldon RA. Engineering a more sustainable world through catalysis and green chemistry. Journal of The Royal Society Interface, 2016, 13(116), 20160087. DOI: 10.1098/rsif.2016.0087
- [21] Michrowska A, Gulański Ł, Kaczmarśka Z, Mennecke K, Kirschning A, Grela K. A green catalyst for green chemistry: Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group. Green Chemistry, 2006, 8(8), 685-688. DOI: 10.1039/B605138C

[22] Meurig Thomas J, Raja R. Designing catalysts for clean technology, green chemistry, and sustainable development. *Annual Review of Materials Research*, 2005, 35(1), 315-350. DOI: 10.1146/annurev.matsci.35.102003.140852

[23] Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC. The role of catalysis in the design, development, and implementation of green chemistry. *Catalysis Today*, 2000, 55(1-2), 11-22. DOI: 10.1016/S0920-5861(99)00222-9

[24] Gladysz JA. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. *Pure and Applied Chemistry*, 2001, 73(8), 1319-1324. DOI: 10.1351/pac200173081319

[25] Ningaraju C, Yatish KV, Mithun Prakash R, Sakar M, Geetha Balakrishna R. Simultaneous refining of biodiesel-derived crude glycerol and synthesis of value-added powdered catalysts for biodiesel production: A green chemistry approach for sustainable biodiesel industries. *Journal of Cleaner Production*, 2022, 363, 132448. DOI: 10.1016/j.jclepro.2022.132448

[26] Naveenkumar R, Baskar G. Process optimization, green chemistry balance and techno-economic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. *Bioresource Technology*, 2021, 320, 124347. DOI: 10.1016/j.biortech.2020.124347

[27] Outili N, Kerras H, Meniai AH. Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. *Current Opinion in Green and Sustainable Chemistry*, 2023, 41, 100794. DOI: 10.1016/j.cogsc.2023.100794

[28] Gross EM, Williams SH, Williams E, Dobberpuhl DA, Fujita J. Synthesis and characterization of biodiesel from used cooking oil: A problem-based green chemistry laboratory experiment. *Green Chemistry Experiments in Undergraduate Laboratories*. American Chemical Society, 2016, 71-92. DOI: 10.1021/bk-2016-1233.ch005

[29] Fasciotti M. Perspectives for the use of biotechnology in green chemistry applied to biopolymers, fuels and organic synthesis: From concepts to a critical point of view. *Sustainable Chemistry and Pharmacy*, 2017, 6, 82-89. DOI: 10.1016/j.scp.2017.09.002

[30] Clark JH, Budarin V, Deswarte FEI, Hardy JJ, Kerton FM, Hunt AJ, et al. Green chemistry and the biorefinery: A partnership for a sustainable future. *Green chemistry*, 2006, 8(10), 853-860. DOI: 10.1039/B604483M

[31] Clark JH, Deswarte FEI, Farmer TJ. The integration of green chemistry into future biorefineries. *Biofuels, Bioproducts and Biorefining*, 2009, 3(1), 72-90. DOI: 10.1002/bbb.119

[32] Linder M. Ripe for disruption: Reimagining the role of green chemistry in a circular economy. *Green Chemistry Letters and Reviews*, 2017, 10(4), 428-435. DOI: 10.1080/17518253.2017.1392618

[33] Hjeresen DL, Kirchhoff MM, Lankey RL. Green chemistry: Environment, economics, and competitiveness. *Corporate Environmental Strategy*, 2002, 9(3), 259-266. DOI: 10.1016/S1066-7938(02)00068-4

[34] Francis AI, Gerald CE, Omale JO. Green chemistry in manufacturing: Innovations in reducing environmental impact. *World Journal of Advanced Research and Reviews*, 2024, 23(3), 2826-2841. DOI: 10.30574/wjarr

[35] Walsh PJ, Li H, de Parrodi CA. A green chemistry approach to asymmetric catalysis: Solvent-free and highly concentrated reactions. *Chemical Reviews*, 2007, 107(6), 2503-2545. DOI: 10.1021/cr0509556

[36] Anpo M. Utilization of TiO₂ photocatalysts in green chemistry. *Pure and Applied Chemistry*, 2000, 72(7), 1265-1270. DOI: 10.1351/pac200072071265

[37] Antenucci A, Dughera S, Renzi P. Green chemistry meets asymmetric organocatalysis: A critical overview on catalysts synthesis. *ChemSusChem*, 2021, 14(14), 2785-2853. DOI: 10.1002/cssc.202100573

[38] Jeon SJ, Li H, Walsh PJ. A green chemistry approach to a more efficient asymmetric catalyst: Solvent-free and highly concentrated alkyl additions to ketones. *Journal of the American Chemical Society*, 2005, 127(47), 16416-16425. DOI: 10.1021/ja052200m

[39] Wen C, Yin A, Dai WL. Recent advances in silver-based heterogeneous catalysts for green chemistry processes. *Applied Catalysis B: Environmental*, 2014, 160, 730-741. DOI: 10.1016/j.apcatb.2014.06.016

[40] Centi G, Perathoner S. Catalysis and sustainable (green) chemistry. *Catalysis Today*, 2003, 77(4), 287-297. DOI: 10.1016/S0920-5861(02)00374-7.

[41] Sheldon RA, Brady D. Green chemistry, biocatalysis, and the chemical industry of the future. *ChemSusChem*, 2022, 15(9), e202102628. DOI: 10.1002/cssc.202102628

[42] Watson WJW. How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability? *Green Chemistry*, 2012, 14(2), 251-259. DOI: 10.1039/C1GC15904F

[43] Cannon AS, Pont JL, Warner JC. Green chemistry and the pharmaceutical industry. *Green techniques for organic synthesis and medicinal chemistry*, 2012, 25-32. DOI: 10.1002/9780470711828

[44] Gupta P, Mahajan A. Green chemistry approaches as sustainable alternatives to conventional strategies in the pharmaceutical industry. *RSC Advances*, 2015, 5(34), 26686-26705. DOI: 10.1039/C5RA00358J

[45] Ciriminna R, Pagliaro M. Green chemistry in the fine chemicals and pharmaceutical industries. *Organic Process Research & Development*, 2013, 17(12), 1479-1484. DOI: 10.1021/op400258a

[46] Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski N J. Green chemistry in the synthesis of pharmaceuticals. *Chemical Reviews*, 2021, 122(3), 3637-3710. DOI: 10.1021/acs.chemrev.1c00631

[47] Roschangar F, Sheldon RA, Senanayake CH. Overcoming barriers to green chemistry in the pharmaceutical industry—the Green Aspiration Level™ concept. *Green Chemistry*, 2015, 17(2), 752-768. DOI: 10.1039/C4GC01563K

[48] Sheldon R. Introduction to green chemistry, organic synthesis and pharmaceuticals. *Green Chemistry in the Pharmaceutical Industry*, 2010, 1-20. DOI: 10.1002/9783527629688

[49] Tucker JL. Green chemistry, a pharmaceutical perspective. *Organic Process Research & Development*, 2006, 10(2), 315-319. DOI: 10.1021/op050227k

[50] Msingh R, Pramanik R, Hazra S, Uni J. Role of green chemistry in pharmaceutical industry: A review. *Journal of University of Shanghai for Science and Technology*, 2021, 23, 291-299, DOI: 10.51201/JUSST/21/121018

[51] Castro GAD, Fernandes SA. Microwave-assisted green synthesis of levulinate esters as biofuel precursors using calix[4]arene as an organocatalyst under solvent-free conditions. *Sustain. Sustainable Energy & Fuels*, 2021, 5(1), 108-111. DOI: 10.1039/D0SE01257B

[52] Murthy HCA, Abebe B, Eshwaramoorthy R, Ranganathan S. Green synthesis of metal oxide nanomaterials for biofuel production. *Nanomaterials*. Academic Press, 2021: 237-257. DOI: 10.1016/B978-0-12-822401-4.00028-3

[53] Rahman M, Hayat A. Green synthesis, properties, and catalytic application of zeolite (P) in production of biofuels from bagasse.

International Journal of Energy Research, 2019, 43(9), 4820-4827. DOI: 10.1002/er.4628

[54] Lahiri D, Nag M, Ghosh S, Ray RR. Green synthesis of nanoparticles and their applications in the area of bioenergy and biofuel production. *Nanomaterials*, 2021, 195-219. DOI: 10.1016/B978-0-12-822401-4.00017-9

[55] Perlatti B, Forim MR, Zuin VG. Green chemistry, sustainable agriculture and processing systems: A Brazilian overview. *Chemical and Biological Technologies in Agriculture*, 2014, 1(1), 5. DOI: 10.1186/s40538-014-0005-1

[56] Bhandari S, Kasana V. Applications of green chemistry principles in agriculture. *Green Chem Technol Lett*, 2018, 4(2), 10-12. DOI: 10.18510/gctl.2018.421

[57] Fenibo EO, Ijoma GN, Nurmahomed W, Matambo T. The potential and green chemistry attributes of biopesticides for sustainable agriculture. *Sustainability*, 2022, 14(21), 14417. DOI: 10.3390/su142114417

[58] Hosamani GB, Chandrashekhar SS, Pooja CA, Lakkaboyana SK. Green chemistry in organic farming. *Green Chemistry in Agriculture and Food Production*, 2023, 68-80.

[59] Fenibo EO, Ijoma GN, Matambo T. Biopesticides in sustainable agriculture: A critical sustainable development driver governed by green chemistry principles. *Frontiers in Sustainable Food Systems*, 2021, 5, 619058. DOI: 10.3389/fsufs.2021.619058.

[60] Srivastava A. Green chemistry: A promising route to sustainable agriculture. *International Journal of Innovative Research in Technology*, 2023, 9(8), 631-640.

[61] Ubuoh EA. Green chemistry: A panacea for environmental sustainability agriculture in global perspective. *Global Journal of Pure and Applied Chemistry Research*, 2016, 4(1), 21-29.

[62] Kobayashi S. Green polymer chemistry: Recent developments. *Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II*, 2013, 141-166. DOI: 10.1007/12_2013_236

[63] Worthington MJH, Kucera RL, Chalker JM. Green chemistry and polymers made from sulfur. *Green Chemistry*, 2017, 19(12), 2748-2761. DOI: 10.1039/C7GC00014F

[64] Cheng HN, Gross RA, Smith PB. Green polymer chemistry: biocatalysis and materials II. *American Chemical Society*, 2013. DOI: 10.1021/bk-2013-1144.ch001

[65] Ofoegbu O, Ike DC. The influenced trajectory of the application of green chemistry in the current manufacturing of plastic/polymer products. *International Journal of New Chemistry*, 2023, 11(2), 90-112. DOI: 10.22034/ijnc.2023.2001962.1337

[66] Mülhaupt R. Green polymer chemistry and bio-based plastics: Dreams and reality. *Macromolecular Chemistry and Physics*, 2013, 214(2), 159-174. DOI: 10.1002/macp.201200439

[67] Cheng HN, Gross RA. Sustainability and green polymer chemistry—An overview. *Sustainability & Green Polymer Chemistry Volume 1: Green Products and Processes*, 2020, 1-11. DOI: 10.1021/bk-2020-1372.ch001

[68] Sheldon RA, Norton M. Green chemistry and the plastic pollution challenge: Towards a circular economy. *Green Chemistry*, 2020, 22(19), 6310-6322. DOI: 10.1039/D0GC02630A

[69] Beach ES, Weeks BR, Stern R, Anastas PT. Plastics additives and green chemistry. *Pure & Applied Chemistry*, 2013, 85(8), 1611-1624. DOI: 10.1351/PAC-CON-12-08-08

[70] Long DC. Greening of consumer cleaning products. *Green Techniques for Organic Synthesis and Medicinal Chemistry*, 2018, 91-115. DOI: 10.1002/9781119288152.ch5

[71] Harding-Smith E, Shaw DR, Shaw M, Dillon TJ, Carslaw N. Does green mean clean? Volatile organic emissions from regular versus green cleaning products. *Environmental Science: Processes & Impacts*, 2024, 26(2), 436-450. DOI: 10.1039/D3EM00439B

[72] To MH, Uisan K, Ok YS, Pleissner D, Lin CSK. Recent trends in green and sustainable chemistry: Rethinking textile waste in a circular economy. *Current Opinion in Green and Sustainable Chemistry*, 2019, 20, 1-10. DOI: 10.1016/j.cogsc.2019.06.002

[73] AKR C. Choudhury, Green chemistry and textile industry. *Journal of Textile Engineering & Fashion Technology*, 2017, 2(3), 351-361. DOI: 10.15406/JTEFT.2017.02.00056

[74] Pandit P, Singha K, Maity S. Green chemistry in textile and fashion. *Chemical Management in Textiles and Fashion*, 2021: 177-203. DOI: 10.1016/B978-0-12-820494-8.00009-5

[75] Arif R, Jadoun S, Verma A. Green chemistry in textile industry and their positive impact of implementation. /Green chemistry for sustainable textiles, 2021: 113-119. DOI: 10.1016/B978-0-323-85204-3.00023-3

[76] Roy Choudhury AK. Green chemistry and the textile industry. *Textile Progress*, 2013, 45(1), 3-143. DOI: 10.1080/00405167.2013.807601

[77] Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A. Green chemistry in the wet processing of textiles. *The Impact and Prospects of Green Chemistry for Textile Technology*, 2019, 1-20. DOI: 10.1016/B978-0-08-102491-1.00001-0

[78] Moore SB, Ausley LW. Systems thinking and green chemistry in the textile industry: Concepts, technologies and benefits. *Journal of Cleaner Production*, 2004, 12(6), 585-601. DOI: 10.1016/S0959-6526(03)00058-1

[79] Alviri H, Lynes J, Habib K. Beyond green chemistry: A comprehensive review of how sustainability has been integrated into cosmetic research. *Global Sustainability*, 2025, 1-52. DOI: 10.1017/sus.2025.5

[80] Secchi M, Castellani V, Collina E, Mirabella N, Sala S. Assessing eco-innovations in green chemistry: Life Cycle Assessment (LCA) of a cosmetic product with a bio-based ingredient. *Journal of Cleaner Production*, 2016, 129, 269-281. DOI: 10.1016/j.jclepro.2016.04.073

[81] Hitee J, Xu J, Brossat M, Frantz MC, Dublanchet AC, Philippe M, et al. UN sustainable development goals: How can sustainable/green chemistry contribute? Green chemistry as a source of sustainable innovations in the cosmetic industry. *Current Opinion in Green and Sustainable Chemistry*, 2018, 13, 164-169. DOI: 10.1016/j.cogsc.2018.06.019

[82] Saxe J K, Hoffman L, Labib R. Method to incorporate green chemistry principles in early-stage product design for sustainability: Case studies with personal care products. *Green Chemistry*, 2022, 24(12), 4969-4980. DOI: 10.1039/D2GC00842D

[83] Franca CCV, Ueno HM. Green cosmetics: Perspectives and challenges in the context of green chemistry. *Desenvolvimento e Meio Ambiente*, 2020, 53(1), 133-150. DOI: 10.5380/dma.v53i0.62322

[84] Cannon AS, Warner JC. Green chemistry: Foundations in cosmetic sciences. *Global Regulatory Issues for the Cosmetics Industry*, 2009, 1-16. DOI: 10.1016/B978-0-8155-1569-2.50007-5

[85] Song J, Han B. Green chemistry: A tool for the sustainable development of the chemical industry. *National Science Review*,

2015, 2(3), 255-256. DOI: 10.1093/nsr/nwu076

[86] Höfer R, Bigorra J. Green chemistry—a sustainable solution for industrial specialties applications. *Green Chemistry*, 2007, 9(3), 203-212. DOI: 10.1039/B606377B

[87] Gupta AK, Boruah T, Ghosh P, Ikram A, Rana SS, Bachetti A. Green chemistry revolutionizing sustainability in the food industry: A comprehensive review and call to action. *Sustainable Chemistry and Pharmacy*, 2024, 42, 101774. DOI: 10.1016/j.scp.2024.101774

[88] Angellier-Coussy H, Gastaldi E, Gontard N, Guillaume C, Guillard V, Peyron S. Green chemistry and agro-food industry: towards a sustainable bioeconomy. 2024, 237-267. DOI: 10.1007/978-3-031-54188-9_10

[89] Pallone JAL, dos Santos Caramés ET, Alamar PD. Green analytical chemistry applied in food analysis: Alternative techniques. *Current Opinion in Food Science*, 2018, 22, 115-121. DOI: 10.1016/j.cofs.2018.01.009

[90] Ballesteros-Vivas D, Socas-Rodríguez B, Mendiola JA, Ibáñez E, Cifuentes A. Green food analysis: Current trends and perspectives. *Current Opinion in Green and Sustainable Chemistry*, 2021, 31, 100522. DOI: 10.1016/j.cogsc.2021.100522

[91] Buttice AL, Stroot JM, Lim DV, Stroot PG, Alcantar NA. Removal of sediment and bacteria from water using green chemistry. *Environmental Science & Technology*, 2010, 44(9), 3514-3519. DOI: 10.1021/es9030744

[92] Stathoulopoulou A, Demadis KD. Enhancement of silicate solubility by use of 'green' additives: linking green chemistry and chemical water treatment. *Desalination*, 2008, 224(1-3), 223-230. DOI: 10.1016/j.desal.2007.06.007

[93] Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. *Journal of Environmental Management*, 2022, 311, 114806. DOI: 10.1016/j.jenvman.2022.114806

[94] Kinidi L, Salleh S. Phytoremediation of nitrogen as green chemistry for wastewater treatment system. *International Journal of Chemical Engineering*, 2017, 2017(1), 1961205. DOI: 10.1155/2017/1961205

[95] Ketsetzi A, Stathoulopoulou A, Demadis KD. Demadis, Being 'green' in chemical water treatment technologies: issues, challenges and developments. *Desalination*, 2008, 223(1-3), 487-493. DOI: 10.1016/j.desal.2007.01.230

[96] Das N, Ojha N, Mandal SK. Wastewater treatment using plant-derived bioflocs: Green chemistry approach for safe environment. *Water Science and Technology*, 2021, 83(8), 1797-1812. DOI: 10.2166/wst.2021.100

[97] Ghernaout D, Ghernaout B, Naceur MW. Naceur, Embodying the chemical water treatment in the green chemistry—A review. *Desalination*, 2011, 271(1-3), 1-10. DOI: 10.1016/j.desal.2011.01.032

[98] Neube LK, Ude AU, Ogunmuyiwa E N, Beas IN. Characterisation of Bambara groundnut (*Vigna subterranea* (L.) Verdc.) shell waste as a potential biomass for different bio-based products. *Environmental Monitoring and Assessment*, 2024, 196(9), 777. DOI: 10.1007/s10661-024-12937-z

[99] Oladosu KO, Babalola SA, Ajao RK, Erinosh MF. Torrefaction of Bambara Groundnut Shell: experimental optimization and prediction of the energy conversion efficiency using statistical and machine learning approaches. *International Journal of Ambient Energy*, 2024, 45(1), 2277309. DOI: 10.1080/01430750.2023.2277309

[100] Ibrahim MD, Gan S, Abakr YA, Lee LY, Thangalazhy-Gopakumar S. Physicochemical analysis of bambara groundnut shell (BGS) for biofuel production. *Chemical Engineering Transactions*, 2023, 106, 1249-1254. DOI: 10.3303/CET23106209

[101] Ibrahim MD. Evaluation on thermochemical processes for bioenergy applications of bambara groundnut shell (BGS), shea nut shell (SNS), shea nut chaff (SNC), and sweet sorghum stalk (SSS). University of Nottingham, 2024.

[102] Patzek TW. A first law thermodynamic analysis of biodiesel production from soybean. *Bulletin of Science, Technology & Society*, 2009, 29(3), 194-204. DOI: 10.1177/0270467609334022

[103] Sohel MI, Jack MW. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: Guiding technology selection and research focus. *Bioresource Technology*, 2011, 102(3), 2617-2622. DOI: 10.1016/j.biortech.2010.10.032

[104] Cobabarren N, Hegel P, Pereda S. Thermodynamic model for process design, simulation and optimization in the production of biodiesel. *Fluid Phase Equilibria*, 2014, 362: 108-112. DOI: 10.1016/j.fluid.2013.09.019

[105] Sorguven E, Özilgen M. Thermodynamic assessment of algal biodiesel utilization. *Renewable Energy*, 2010, 35(9), 1956-1966. 2010, DOI: 10.1016/j.renene.2010.01.024

[106] Ahmed M, Ahmad KA, Vo DVN, Yusuf M, Haq A, Abdullah A, et al. Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. *Energy Conversion and Management*, 2023, 280, 116821. DOI: 10.1016/j.enconman.2023.116821

[107] Souza MF, Hirata GF, Batista EAC. Evaluation of kinetics and thermodynamic parameters for simulation of palm oil biodiesel production. *Fluid Phase Equilibria*, 2020, 525, 112792. DOI: 10.1016/j.fluid.2020.112792

[108] Sohel MI, Jack MW. Thermodynamic analysis of a high-yield biochemical process for biofuel production. *Bioresource Technology*, 2012, 124, 406-412. DOI: 10.1016/j.biortech.2012.08.058

[109] Kefas HM, Abubakar AM, Aliyu MJ, Bulus R, Stojchevski M, Soomro SA. Sustainable biodiesel synthesis from oleic acid: Kinetic study with carbonized bambara nutshell catalyst. *Latin American Journal of Energy Research*, 2024, 11(2), 102-118. DOI: 10.21712/lajer.2024.v11.n2.p102-118

[110] Kefas HM, Silas K, Abubakar AM, Titus A. Oleic fatty acid and carbonized bambara nutshell catalyst in the optimization of biodiesel production using DOE Pro XL. *Nigerian Journal of Engineering Science and Technology Research*, 2024, 10(2): 223-238.

[111] Ponton JW. Biofuels: Thermodynamic sense and nonsense. *Journal of Cleaner Production*, 2009, 17(10), 896-899. DOI: 10.1016/j.jclepro.2009.02.003

[112] Khalighi S. Biodiesel production: Determination of thermodynamic properties and monitoring of the transesterification reaction. Universidade de Coimbra (Portugal), 2024.

[113] Sahani S, Roy T, Sharma YC. Clean and efficient production of biodiesel using barium cerate as a heterogeneous catalyst for the biodiesel production; kinetics and thermodynamic study. *Journal of Cleaner Production*, 2019, 237, 117699. DOI: 10.1016/j.jclepro.2019.117699

[114] Noreen S, Sahar I, Masood N, Iqbal M, Zahid M, Nisar J, et al. Thermodynamic and kinetic approach of biodiesel production from waste cooking oil using nano-catalysts. *Zeitschrift für Physikalische Chemie*, 2021, 235(12), 1673-1688. DOI: 10.1515/zpch-2020-1644

[115] Smaisim GF, Prabu NM, Senthilkumar AP, Abed AM. Synthesis of biodiesel from fish processing waste by nano magnetic

catalyst and its thermodynamic analysis. *Case Studies in Thermal Engineering*, 2022, 35, 102115. DOI: 10.1016/j.csite.2022.102115

[116] Feyzi M, Hosseini N, Yaghobi N, Ezzati R. Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. *Chemical Physics Letters*, 2017, 677, 19-29. DOI: 10.1016/j.cplett.2017.03.014

[117] Gholipour Zanjani N, Kamran Pirzaman A, Yazdanian E. Biodiesel production in the presence of heterogeneous catalyst of alumina: Study of kinetics and thermodynamics. *International Journal of Chemical Kinetics*, 2020, 52(7), 472-484. DOI: 10.1002/kin.21363

[118] Ruatpuja JVJ, Halder G, Shi D, Halder S, Rokhum SL. Comparative life cycle cost analysis of bio-valorized magnetite nanocatalyst for biodiesel production: Modeling, optimization, kinetics and thermodynamic study. *Bioresource Technology*, 2024, 393, 130160. DOI: 10.1016/j.biortech.2023.130160

[119] Feyzi M, Shahbazi Z. Preparation, kinetic and thermodynamic studies of Al-Sr nanocatalysts for biodiesel production. *Journal of the Taiwan Institute of Chemical Engineers*, 2017, 71, 145-155. DOI: 10.1016/j.jtice.2016.11.023

[120] Abubakar AM, Kefas HM, Luka Y, Kawa JJ. Revolutionaryizing biodiesel synthesis: Kinetic and thermodynamic insights with carbonized doum-shell catalyst. *Trends in Ecological and Indoor Environmental Engineering*, 2024, 2(2), 11-23. DOI: 10.62622/TEIEE.024.2.2.11-23

[121] Rodrigues JS, do Valle CP, Guerra PAGP, de Sousa Rios MA, de Queiroz Malveira J, Ricardo NM. Study of kinetics and thermodynamic parameters of the degradation process of biodiesel produced from fish viscera oil. *Fuel Processing Technology*, 2017, 161, 95-100. DOI: 10.1016/j.fuproc.2017.03.013

[122] Saikia K, Das A, Sema AH, Basumatary S, Moyon NS, Mathimani T, et al. Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst. *Renewable Energy*, 2024, 229, 120743. DOI: 10.1016/j.renene.2024.120743

[123] Vishnupriya M, Ramesh K, Sivakumar P, Sivakumar R, Balasubramanian, and A. Sircar, Kinetic and thermodynamic studies on the extraction of bio oil from Chlorella vulgaris and the subsequent biodiesel production. *Chemical Engineering Communications*, 2019, 206(3), 409-418. DOI: 10.1080/00986445.2018.1494582

[124] Salim SM, Izriq R, Almakay MM, Al-Abbassi AA. Synthesis and characterization of ZnO nanoparticles for the production of biodiesel by transesterification: Kinetic and thermodynamic studies. *Fuel*, 2022, 321, 124135. DOI: 10.1016/j.fuel.2022.124135

[125] Farid MAA, Johari SAM, Lease J, Ayoub M, Andou Y. Kinetics and thermodynamics in microwave-assisted transesterification of palm oil utilizing sulphonated bio-graphene catalysts for biodiesel production. *Biomass and Bioenergy*, 2024, 185, 107236. DOI: 10.1016/j.biombioe.2024.107236

[126] Yatish KV, Omkaresh BR, Kattimani VR, Lalithamba HS, Sakar M, Balakrishna RG. Solar energy-assisted reactor for the sustainable biodiesel production from Butea monosperma oil: Optimization, kinetic, thermodynamic and assessment studies. *Energy*, 2023, 263, 125768. DOI: 10.1016/j.energy.2022.125768

[127] Sahani S, Sharma YC. Economically viable production of biodiesel using a novel heterogeneous catalyst: Kinetic and thermodynamic investigations. *Energy Conversion and Management*, 2018, 171, 969-983. DOI: 10.1016/j.enconman.2018.06.059

[128] Chen L, He L, Zheng B, Wei G, Li H, Zhang H, et al. Bifunctional acid-activated montmorillonite catalyzed biodiesel production from non-food oil: Characterization, optimization, kinetic and thermodynamic studies. *Fuel Processing Technology*, 2023, 250, 107903. DOI: 10.1016/j.fuproc.2023.107903

[129] Zeng D, Yang L, Fang T. Process optimization, kinetic and thermodynamic studies on biodiesel production by supercritical methanol transesterification with CH₃ONa catalyst. *Fuel*, 2017, 203, 739-748. DOI: 10.1016/j.fuel.2017.05.019

[130] Roy T, Sahani S, Sharma YC. Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. *Journal of Cleaner Production*, 2020, 247, 119166. DOI: 10.1016/j.jclepro.2019.119166

[131] Pugazhendhi A, Alagumalai A, Mathimani T, Atabani AE. Optimization, kinetic and thermodynamic studies on sustainable biodiesel production from waste cooking oil: An Indian perspective. *Fuel*, 2020, 273, 117725. DOI: 10.1016/j.fuel.2020.117725

[132] Atelge MR. Production of biodiesel and hydrogen by using a double-function heterogeneous catalyst derived from spent coffee grounds and its thermodynamic analysis. *Renewable Energy*, 2022, 198, 1-15. DOI: 10.1016/j.renene.2022.08.018

[133] Mathiarasi R, Partha N. Optimization, kinetics and thermodynamic studies on oil extraction from Daturametel Linn oil seed for biodiesel production. *Renewable Energy*, 2016, 96, 583-590. DOI: 10.1016/j.renene.2016.04.078

[134] Tulashie SK, Kotaka F. Kinetics and thermodynamic studies on *Moringa oleifera* oil extraction for biodiesel production via transesterification. *Biofuels*, 2022, 13(3), 341-349. DOI: 10.1080/17597269.2019.1697041

[135] Ao S, Greer HF, Alghamdi LA, Rashid U, Halder G, Wheatley AE, et al. Snail shell derived magnetic nanocatalysts for biodiesel production: Process optimization through response surface methodology, kinetics, and thermodynamic studies. *Biomass and Bioenergy*, 2024, 191, 107442. DOI: 10.1016/j.biombioe.2024.107442

[136] MShaah MA, Hossain MS, Allafi F, Ab Kadir MO, Ahmad MI. Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies. *RSC advances*, 2022, 12(16), 9845-9861. DOI: 10.1039/D2RA00571A

[137] Shalfoh E, Ahmad M I, Binhweel F, Shaah MA, Senusi W, Alsaadi S, et al. Biomass to biofuel: Optimizing sustainable biodiesel production from fish waste and thermodynamic-kinetic analysis. *Biofuels, Bioproducts and Biorefining*, 2025, 19(3), 654-677. DOI: 10.1002/bbb.2724

[138] Sun C, Hu Y, Sun F, Sun Y, Song G, Chang H, et al. Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: Physicochemical properties, reaction kinetic and thermodynamic studies. *Renewable Energy*, 2022, 181, 1419-1430. DOI: 10.1016/j.renene.2021.09.122

[139] Nautiyal P, Subramanian KA, Dastidar MG. Kinetic and thermodynamic studies on biodiesel production from *Spirulina platensis* algae biomass using single stage extraction-transesterification process. *Fuel*, 2014, 135, 228-234. DOI: 10.1016/j.fuel.2014.06.063

[140] Blanco-Marigorta AM, Suárez-Medina J, Vera-Castellano A, Vera-Castellano, Exergetic analysis of a biodiesel production

process from *Jatropha curcas*. *Applied Energy*, 2013, 101, 218-225. DOI: 10.1016/j.apenergy.2012.05.037

[141] Huang WD, Zhang YHP. Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. *Energy & Environmental Science*, 2011, 4(3), 784-792. DOI: 10.1039/C0EE00069H

[142] dos Santos KC, Voll FAP, Corazza ML. Thermodynamic analysis of biodiesel production systems at supercritical conditions. *Fluid Phase Equilibria*, 2019, 484, 106-113. DOI: 10.1016/j.fluid.2018.11.029

[143] Arce PF, Vieira NF, Igarashi EMS. Thermodynamic modeling and simulation of biodiesel systems at supercritical conditions. *Industrial & Engineering Chemistry Research*, 2018, 57(2), 751-767. DOI: 10.1021/acs.iecr.7b04195

[144] Sayed MA, Ahmed SA, Othman SI, Allam AA, Al Zoubi W, Ajarem J, et al. Kinetic, thermodynamic, and mechanistic studies on the effect of the preparation method on the catalytic activity of synthetic Zeolite-A during the transesterification of waste cooking oil. *Catalysts*, 2022, 13(1), 30. DOI: 10.3390/catal13010030

[145] Yusuf BO, Oladepo SA, Ganiyu SA. Biodiesel production from waste cooking oil via β -zeolite-supported sulfated metal oxide catalyst systems. *ACS omega*, 2023, 8(26), 23720-23732. DOI: 10.1021/acsomega.3c01892

[146] Basumatary SF, Brahma S, Hoque M, Das BK, Selvaraj M, Brahma S, et al. Advances in CaO-based catalysts for sustainable biodiesel synthesis. *Green Energy and Resources*, 2023, 1(3), 100032. DOI: 10.1016/j.gerr.2023.100032

[147] El-Khair MAA, El Naga AOA, Morshed AS. Rapid and low-temperature biodiesel production from waste cooking oil: Kinetic and thermodynamic insights using a KOH/ZnAl₂O₄ nanocatalyst derived from waste aluminum foil. *Energy Conversion and Management*, 2024, 318, 118898. DOI: 10.1016/j.enconman.2024.118898

[148] Osagiede CA, Akhabue CE. Kinetics and thermodynamics studies of the transesterification of waste cooking oil using biochar-based catalyst derived from rubber seed shells. *Journal of Science and Technology Research*, 2024, 6(2), 319-330. DOI: 10.5281/zenodo.12706977

[149] Suleiman KK, Isah M, Abdulfatai AS, Danyaro Z. Kinetics and thermodynamics study of biodiesel production from neem oil using alumina as a catalyst. *Fudma Journal of Sciences*, 2023, 7(3), 65-71. DOI: 10.33003/fjs-2023-0703-1851

[150] Yusuff AS. Kinetic and thermodynamic study on the esterification of oleic acid over SO₃H-functionalized eucalyptus tree bark biochar catalyst. *Scientific Reports*, 2022, 12(1), 8653. DOI: 10.1038/s41598-022-12539-0

[151] Li W, Li G, Wang F, Zhu H, He W, Huang J. Optimization and comparison of biodiesel production process by electric heating and microwave-assisted heating transesterification for waste cooking oil via one-way experiments and ANOVA. *Frontiers in Environmental Science*, 2022, 10, 885453. DOI: 10.3389/fenvs.2022.885453

[152] Nga TTT, Thanh TH, Binh NA, Thành NK, Kiết HT, Trần NPM. Synthesis heterogeneous catalyst FexOy/CaO from blue crab shell for transesterification of fish fat oil. *Tạp chí Khoa học Trường Đại học Sư phạm TP Hồ Chí Minh*, 2024, 21(9), 1668-1668. DOI: 10.54607/hcmue.js.21.9.4213(2024)

[153] Pham EC, Le TVT, Le KCT, Ly HHH, Vo BNT, Van Nguyen D, et al. Optimization of microwave-assisted biodiesel production from waste catfish using response surface methodology. *Energy Reports*, 2022, 8, 5739-5752. DOI: 10.1016/j.egyr.2022.04.036

[154] Yelegen N, Kümük B, Kayan DB, Baran T, Kaplan Y. Enhancing the performance of unitized regenerative proton exchange membrane fuel cells through microwave-synthesized chitosan based nanocomposites. *International Journal of Biological Macromolecules*, 2024, 282, 137220. DOI: 10.1016/j.ijbiomac.2024.137220